Everything, Nothing ...
Contributors
Saturday, September 30, 2006
Friday, September 29, 2006
Thursday, September 28, 2006
中國人造太陽實驗成功放電
中國人造太陽實驗成功放電[17:21]
中國周四在合肥進行人造太陽實驗,首次成功放電。這是全球首個投入運行的全超導非圓截面核聚變實驗裝置。
人造太陽以探索無限而清潔的核聚變能源為目標。由於它和太陽產生能量的原理相同,都是熱核聚變反應,所以被外界稱為人造太陽。
所謂的人造太陽,就是在這台裝置的真空室內加入少量氫的同位素氘或氚,通過類似變壓器的原理使其產生等離子體,然後提高其密度、溫度使其發生聚變反應,反應過程中會產生巨大的能量。
1升海水提取的氘,在完全的聚變反應中釋放的能量,相當於燃燒300升汽油釋放的熱能。因此一旦這種技術成熟,建立了電站,就相當於建立了一個人造太陽。
中國周四在合肥進行人造太陽實驗,首次成功放電。這是全球首個投入運行的全超導非圓截面核聚變實驗裝置。
人造太陽以探索無限而清潔的核聚變能源為目標。由於它和太陽產生能量的原理相同,都是熱核聚變反應,所以被外界稱為人造太陽。
所謂的人造太陽,就是在這台裝置的真空室內加入少量氫的同位素氘或氚,通過類似變壓器的原理使其產生等離子體,然後提高其密度、溫度使其發生聚變反應,反應過程中會產生巨大的能量。
1升海水提取的氘,在完全的聚變反應中釋放的能量,相當於燃燒300升汽油釋放的熱能。因此一旦這種技術成熟,建立了電站,就相當於建立了一個人造太陽。
Tuesday, September 26, 2006
京深滬時興網上同居
京深滬時興網上同居
【明報專訊】源自台灣的「網絡同居」遊戲最近愈來愈受到深圳、上海、北京等大城市單身年輕白領追捧。內地著名網站「愛情公寓」(http://www.i-part.com.cn)最近數字顯示,目前在該網站搭建「公寓」的已逾260萬人,並有逾3萬對男女「入住」該網站公寓的「兩人小窩」,成為「網絡同居者」。
目前,內地具備「網絡同居」平台功能的網站有幾十個,每個人數少則幾千,多則上萬。
一網站逾260萬戶
深圳《晶報》報道,「網絡同居」是網上虛擬行為,即兩個網友根據網上提供的資料,互相同意後,在一間虛擬套房內,戀愛、結婚、生兒育女,一起煮飯、養寵物、澆灌花草,必要時還可撫養小孩。這一切只要關上電腦,就不復存在。「網絡同居」平台還可聊天、玩遊戲、上傳照片、語音對話、發郵件,像icq那樣聊天,也可像blog一樣發表心情日記。
這源自台灣的網絡遊戲幾年前進入內地後,迅速發展。去年上海「愛情公寓」創辦僅一個月,入住用戶已有10萬。昨日,「愛情公寓」網站首頁顯示,公寓住戶已超過260萬,有逾3萬間「兩人小窩」。這個數字還在持續更新。有報道稱,「愛情公寓」每日有五、六千新「居民」入住,參與者以20至25歲城市白領女性和大學生居多,其中不乏已婚知識型人士。
【明報專訊】源自台灣的「網絡同居」遊戲最近愈來愈受到深圳、上海、北京等大城市單身年輕白領追捧。內地著名網站「愛情公寓」(http://www.i-part.com.cn)最近數字顯示,目前在該網站搭建「公寓」的已逾260萬人,並有逾3萬對男女「入住」該網站公寓的「兩人小窩」,成為「網絡同居者」。
目前,內地具備「網絡同居」平台功能的網站有幾十個,每個人數少則幾千,多則上萬。
一網站逾260萬戶
深圳《晶報》報道,「網絡同居」是網上虛擬行為,即兩個網友根據網上提供的資料,互相同意後,在一間虛擬套房內,戀愛、結婚、生兒育女,一起煮飯、養寵物、澆灌花草,必要時還可撫養小孩。這一切只要關上電腦,就不復存在。「網絡同居」平台還可聊天、玩遊戲、上傳照片、語音對話、發郵件,像icq那樣聊天,也可像blog一樣發表心情日記。
這源自台灣的網絡遊戲幾年前進入內地後,迅速發展。去年上海「愛情公寓」創辦僅一個月,入住用戶已有10萬。昨日,「愛情公寓」網站首頁顯示,公寓住戶已超過260萬,有逾3萬間「兩人小窩」。這個數字還在持續更新。有報道稱,「愛情公寓」每日有五、六千新「居民」入住,參與者以20至25歲城市白領女性和大學生居多,其中不乏已婚知識型人士。
mathematical guide
http://ebooksclub.org/?module=showThread&id=20741
About This Guide
Why this Guide
This guide was created in an effort to classify the most important books in Mathematics here at ebooksclub.org. ebooksclub categories is so broad that it's almost inconvenient, but when you look for a certain topic in the many subtopics of mathematics, things gets little messy.
What is this Guide *NOT
This is not an exhaustive list of all Mathematics books at ebooksclub, it only highlights the famous, standard, helpful books around here. If you intend to search for a specific mathematics book, please refer to ebooksclub.org search facility.
Criticism
Please, your constructive criticism is all welcomed, but please this work is still requires much time and energy, for now I classify books for Top Level topics of MSC classification and it's of course still
Under Construction
You're welcome to suggest new books, correct classifications and all that.
About the classification
I use the AMS(Americal Mathematical Society)'s MSC 2000(Mathematical Subject Classification).
However I had to drift a little to include broad topics such as the so called College Algebra, College Geometry and all that.
The MSC classification is as the following
* 00: General material including elementary mathematics
* 01: History and biography
* 03: Mathematical logic and foundations
* 05: Combinatorics and graph theory
* 06: Order, lattices, ordered algebraic structures
* 08: General algebraic systems
* 11: Number theory
* 12: Field theory and polynomials
* 13: Commutative rings and algebras
* 14: Algebraic geometry
* 15: Linear and multilinear algebra; matrix theory
* 16: Associative rings and algebras
* 17: Nonassociative rings and algebras
* 18: Category theory, homological algebra
* 19: K-theory
* 20: Group theory and generalizations
* 22: Topological groups, Lie groups
* 26: Real functions and elementary calculus
* 28: Measure and integration
* 30: Functions of a complex variable
* 31: Potential theory
* 32: Several complex variables and analytic spaces
* 33: Special functions including trigonometric functions
* 34: Ordinary differential equations
* 35: Partial differential equations
* 37: Dynamical systems and ergodic theory
* 39: Difference and functional equations
* 40: Sequences, series, summability
* 41: Approximations and expansions
* 42: Fourier analysis
* 43: Abstract harmonic analysis
* 44: Integral transforms, operational calculus
* 45: Integral equations
* 46: Functional analysis
* 47: Operator theory
* 49: Calculus of variations and optimal control; optimization
* 51: Geometry, including classic Euclidean geometry
* 52: Convex and discrete geometry
* 53: Differential geometry
* 54: General topology
* 55: Algebraic topology
* 57: Manifolds and cell complexes
* 58: Global analysis, analysis on manifolds
* 60: Probability theory and stochastic processes
* 62: Statistics
* 65: Numerical analysis
* 68: Computer science
* 70: Mechanics of particles and systems
* 74: Mechanics of deformable solids
* 76: Fluid mechanics
* 78: Optics, electromagnetic theory
* 80: Classical thermodynamics, heat transfer
* 81: Quantum Theory
* 82: Statistical mechanics, structure of matter
* 83: Relativity and gravitational theory
* 85: Astronomy and astrophysics
* 86: Geophysics
* 90: Operations research, mathematical programming
* 91: Game theory, economics, social and behavioral sciences
* 92: Biology and other natural sciences
* 93: Systems theory; control
* 94: Information and communication, circuits
* 97: Mathematics education
* 00: General material including elementary mathematics
The Mathematics Subject Classification uses the classification 00 principally for non-subject-specific materials, such as conference proceedings, dictionaries, handbooks, and problem books. It also includes subject-specific items not typically noted in the Mathematical Reviews database by the AMS, such as elementary mathematics, recreational mathematics, and elementary applications of mathematics.
In general, such material is not included in this collection either. In many cases an occasion arises to treat an elementary question in a non-elementary way, and to so illustrate some branch of more advanced mathematics. When such an illustration is saved in this collection, it is classified according to the tool used (contrary to AMS guidelines for the use of the MSC!).
00A05: General mathematics
What Is Mathematics?: An Elementary Approach to Ideas and Methods
The Mathematics of Infinity: A Guide to Great Ideas (Good as a supplement)
Abel's Theorem in Problems and Solutions
Abel's Proof: An Essay on the Sources and Meaning of Mathematical Unsolvability
The Four-Color Theorem : History, Topological Foundations, and Idea of Proof
Kepler's Conjecture: How Some of the Greatest Minds in History Helped Solve One of the Oldest Math Problems in the World
College Algebra
Personally I don't consider this category as Algebra per se, it even discusses topics outside Algebra entirely as part of Algebra (such as Graphs, Sequences and so...)
College Algebra, Blitzer, Third Edition
College Algebra Demystified
Inner Algebra
Algebra Demystified
Schaum's Easy Outline Intermediate Algebra
501 Algebra Questions
Just in Time Algebra
Algebra Success In 20 Minutes A Day
Pre-Algebra Demystified
Schaum's Outline of College Mathematics
Problem Solving
Discusses techniques either explicitly or through problems, lots of categories overlap here, from Combinatorics and Algebra to Geometry and The Calculus, even Evolutionary Algorithms.
Problem-Solving Strategies *****
Problem Solving Through Problems *****
Mathematical Problems and Proofs : Combinatorics, Number Theory, and Geometry *****
Polynomials, Barbeau *****
Solving Equations With Physical Understanding
Engineering Problem Solving : A Classical Perspective
The IMO Compendium: A Collection of Problems Suggested for The International Mathematical Olympiads: 1959-2004 *****
How to Solve It: Modern Heuristics
103 Trigonometry Problems: From the Training of the USA IMO Team*****
How to Solve Word Problems in Calculus
Master Math : Solving Word Problems
* 01: History and biography
Unknown Quantity: A Real And Imaginary History of Algebra, Derbyshire
A Mathematician's Apology, Hardy
* 03: Mathematical logic and foundations
Set theory
Elements of Set theory, Enderton
Introduction to Set Theory, Hrbacek
Lectures in Logic and Set Theory, Tourlakis
Set Theory : Boolean-Valued Models and Independence Proofs, Bell
Mathematical Logic
Mathematical Logic, Ebbinghaus *****
A Mathematical Introduction to Logic, Enderton *****
Modal Logic, Chagrov
Language, Proof, and Logic
Incompleteness: The Proof and Paradox of Kurt Godel
Godel's Proof *****
Proof Writing
Usually discusses Set Theory, First order logic, and Number systems beside of course proof writing *techniques*.
Bridge to Abstract Mathematics
Math Proofs Demystified
Basic Concepts of Mathematics (No ISBN, Go to trillia.com)
Proofs from the Book
Note: This book isn't really about proof writing, but rather shows beautiful proofs in mathematics, should be used for inspiration.
* 05: Combinatorics and graph theory
TextBooks
Discrete Mathematics and its Applications, Rosen
Discrete and Combinatorial Mathematics: An Applied Introduction, Grimaldi
Discrete Mathematics, Lovasz
A First Course in Discrete Mathematics, Anderson
Discrete Mathematics for New Technology
Schaum's Outline of Discrete Mathematics
Handbook of Discrete and Combinatorial Mathematics
Concrete Mathematics, Knuth
Combinatorics
Combinatorics, Merris
Combinatorics : Topics, Techniques, Algorithms
Enumerative Combinatorics, Stanley
Handbook of Combinatorics, Graham
Combinatorial Species and Tree-like Structures
Graph theory
Fractional Graph Theory: A Rational Approach to the Theory of Graphs
Graph Theory With Applications
Algebraic Graph Theory
Graph Theory, Diestel
Eigenspaces of Graphs
Graph Algorithms and Applications
Modern Graph Theory, Bollobas
* 06: Order, lattices, ordered algebraic structures
* 08: General algebraic systems
* 11: Number theory
An Introduction to the Theory of Numbers, Hardy
Problems in Algebraic Number Theory
Analytic Number Theory, Newman
Transcendental Number Theory
Introduction to Analytic Number Theory, Apostol *****
Advanced Number Theory, Cohn
Elementary Methods in Number Theory, Nathanson
Analytic Number Theory: An Introductory Course
A Course in Number Theory and Cryptography
Number Theory, Shafarevich
The Book of Numbers, John Horton Conway *****
On Numbers and Games, John Horton Conway *****
Popular Level
Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics *****
* 12: Field theory and polynomials
Abstract Algebra(Undergraduate level):
A Survey of Modern Algebra, MacLange
Algebra I, Basic Notions of Algebra, Shafarevich
Abstract Algebra (3rd Edition), Dummit and Foote
Applications of Abstract Algebra with MAPLE, Klima
Modern Algebra with Applications, Gilbert
Lectures in Abstract Algebra: Basic Concepts, Jacobson
Schaum's Outline of Abstract Algebra
Abstract Algebra Textbooks(Graduate level)
Algebra, Lang
Advanced Modern Algebra, Rotman
Algebra: A Graduate Course, Isaacs
* 13: Commutative rings and algebras
Introduction to Commutative Algebra, Atiyah
Undergraduate Commutative Algebra, Reid
Computational Commutative Algebra 1
Commutative Algebra : with a View Toward Algebraic Geometry
Computational Aspects of Commutative Algebra: From a Special Issue of the Journal of Symbolic Computation 1989
Grobner Bases: A Computational Approach to Commutative Algebra
Combinatorial Commutative Algebra
Matrices over Commutative Rings
Commutative Algebra, Matsumura
* 14: Algebraic geometry
Undergraduate Algebraic Geometry, Reid
Algebraic Geometry : A First Course, Harris
Sheaves in Geometry and Logic : A First Introduction to Topos Theory
The Geometry of Schemes, Harris
Commutative Algebra : with a View Toward Algebraic Geometry
Algebraic Geometry, Bump
Algebraic Geometry 1: From Algebraic Varieties to Schemes
Algebraic Geometry, Hartshorne
Principles of Algebraic Geometry, Griffiths and Harris
Basic Algebraic Geometry 1: Varieties in Projective Space, Shafarevich
Basic Algebraic Geometry 2: Schemes and Complex Manifolds, Shafarevich
* 15: Linear and multilinear algebra; matrix theory
Linear Algebra (Abstract)
Finite Dimensional Vector Spaces
Linear Algebra, Hoffman
Linear Algebra Done right, Axler
Lectures in Abstract Algebra Vol 2 Linear Algebra, Jacobson
Linear Algebra : Gateway to Mathematics, Messer
Linear Algebra (Less Abstract, More Applications)
Linear Algebra and It's Applications, Strang
Applied Linear Algebra and Matrix Analysis, Shores
Schaum's Outline of Theory and Problems of Linear Algebra, Lipschutz
Matrix Analysis and Applied Linear Algebra, Meyer
Applied Numerical Algebra, Demmel
Applied Linear Algebra, Usmani
* 16: Associative rings and algebras
* 17: Nonassociative rings and algebras
* 18: Category theory, homological algebra
Categories for the Working Mathematician, MacLane
Abelian Categories: An Introduction to the Theory of Functors
Categories and functors, Pareigis
Methods of Homological Algebra
A Course in Homological Algebra
An Elementary Approach to Homological Algebra
* 19: K-theory
* 20: Group theory and generalizations
Linear Groups with an Exposition of Galois Field Theory
Group Rings, Crossed Products, and Galois Theory
The Classification of the Finite Simple Groups
The theory of groups, Kurosh
Problems in Group Theory, Dixon
* 22: Topological groups, Lie groups
Lie Groups, Lie Algebras, and Representations, Hall
Matrix Groups, Baker
Lectures on Lie Groups, Hsiang
* 26: Real functions and elementary calculus
Elementary Calculus
Topics in Calculus include Continuity, Differentiation, Integration, Sequences, Series. The Calculus is developed using basic results of Geometry and Algebra without usage of point set topology. Limits will be studies/used extensively (Formal epsilon delta proofs not usually discussed in detail). Basic results of Calculus will be studies on Algebraic functions (Polynomials, Rational, Power) and Elementary transcendental functions (Logariths, Exponentials, Trigonometrics). Applications to the physical sciences to illustrate the power of the Calculus. Some courses will also Analytic Geometry along the way. Multi Variable Calculus will mostly use 3D Geometry to develop intuition, further generalization to higher dimensions most likely will be studied in a later course (usually Global Analysis). Some Elementary Numerical methods will be discussed without further study of error analysis.
Calculus, Vol. 1. Apostol *****
Calculus, Vol. 2. Apostol *****
Foundations of Differential Calculus, Euler
A Course of Pure Mathematics, Hardy *****
Foundations of Analysis, Landau ****
Inside Calculus ****
Calculus, Stewart
Calculus : Early Transcendentals, Stewart ***
Calculus, Gilbert Strang (MIT)
Schaum's Outline of Beginning Calculus
Calculus unlimited
Elementary Calculus: An Infinitesimal Approach
Advanced Calculus, Loomis
On the Shoulders of Giants: A Course in Single Variable Calculus
Calculus (Cliffs Quick Review)
Calculus for the Utterly Confused
Calculus: Single Variable, Smith and Minton
Schaum's Outline of Theory and Problems of Advanced Calculus
Advanced Calculus, Kaplan
Advanced Calculus with Applications in Statistics
Calculus of Vector Functions
Calculus Demystified
Schaum's Outline of Advanced Calculus
Introductory Mathematical Analysis:
Studies The Calculus in a rigorous, formal and generalized manner. (not too generalization however)
Basic Elements of Real Analysis, Protter ***
Real Mathematical Analysis, Pugh *****
Principles of Mathematical Analysis, Rudin *****
Mathematical Analysis, Apostol *****
* 28: Measure and integration
The Lebesgue-Stieltjes Integral : A Practical Introduction
The Elements of Integration and Lebesgue Measure *****
Real and Complex Analysis, Rudin *****
Real Analysis, Royden *****
Real Analysis, Lang ***
Measure theory and fine properties of functions, Evans *****
Measure, Integral and Probability, Capinski ****
Measure and Integral, Wheeden and Zygmund *****
Schaum's Outline of Theory and Problems of Real Variables; Lebesgue Measure and Integration With Applications to Fourier Series **
* 30: Functions of a complex variable
Elementary Textbooks:
Complex Analysis (Theory of analytic functions) at a level suitable for Undergraduate study where real analysis rerequisites.
A First Course in Complex Analysis with Applications, Zill
Calculus with Complex Numbers, Reade
Standard Textbooks:
Complex Analysis, Ahlfors *****
A Course of Modern Analysis, Whittaker and Watson ***** (A Classic for Transcendenting functions)
Complex Analysis through examplex and Exercises, Pap
Functions of One Complex Variable, Conway
Complex Variables and the Laplace Transform for Engineers, LePage
* 31: Potential theory
* 32: Several complex variables and analytic spaces
Several Complex Variables, Schneider
* 33: Special functions including trigonometric functions
Special Functions, Andrews
Orthogonal Polynomials and Special Functions, Askey
On a Class of Incomplete Gamma Functions with Applications
Chebyshev Polynomials, Mason
* 34: Ordinary differential equations
Introductory Differential Equations
Elementary Differential Equations and Boundary Value Problems, Boyce and DiPrima
Schaum's Easy Outline Differential Equations
Handbook of Differential Equations, Zwillinger
Schaum's Outline of Differential Equations
Differential Equations Demystified
Ordinary Differential Equations, Arnold
Differential Equations, Dynamical Systems, and Linear Algebra, Hirsch
Ordinary Differential Equations, Hartman
Numerical Solutions for Differential Equations
Ordinary and Partial Differential Equation Routines in C, C++, Fortran, Java, Maple, and MATLAB
Scientific Computing and Differential Equations : An Introduction to Numerical Methods
Numerical Methods for Ordinary Differential Equations
Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations
Generalized Difference Methods for Differential Equations: Numerical Analysis of Finite Volume Methods
Numerical Methods for Elliptic and Parabolic Partial Differential Equations
Numerical Methods for Partial Differential Equations
Boundary and Finite Elements: Theory and Problems
* 35: Partial differential equations
An Introduction to Partial Differential Equations, Renardy
Introduction to Partial Differential Equations. : A Computational Approach
Lectures on Partial Differential Equations, V. I. Arnold
Partial Differential Equations, Evans
A First Course in Partial Differential Equations With Complex Variables and Transform Methods, Weinberger
Hilbert Space Methods for Partial Differential Equations
Nonlinear Partial Differential Equations for Scientists and Engineers
Partial Differential Equations and the Finite Element Method
Handbook of Linear Partial Differential Equations for Engineers and Scientists
Handbook of Nonlinear Partial Differential Equations
Partial Differential Equations, Volumes I, II, III by Taylor
Elementary Applied Partial Differential Equations: With Fourier Series and Boundary Value Problems
* 37: Dynamical systems and ergodic theory
Invitation to Dynamical Systems
Introduction to Dynamical Systems
Lectures on Chaotic Dynamical Systems
An Introduction to Chaotic Dynamical Systems *****
Dynamical Systems[img=http://www.ebooksclub.org/images/emoticons/icon_biggrin.gif a=biggrin][/img]ifferential Equations, Maps and Chaotic Behavior
Dynamical Systems, Birkhoff
Dynamical Systems and Ergodic Theory
Mathematics of dynamical systems
Chaos in Dynamical Systems
Introduction to Applied Nonlinear Dynamical Systems and Chaos
Fractals
Fractal Geometry : Mathematical Foundations and Applications, Falconer
Techniques in Fractal Geometry, Falconer
Fractal Geometry and Stochastics
* 39: Difference and functional equations
Difference Equations and Inequalities: Theory, Methods, and Applications
Lectures on Functional Equations and Their Applications
Difference Equations with Applications to Queues
Functional equations in a single variable, Kuczma
* 40: Sequences, series, summability
* 41: Approximations and expansions
Numerical Analysis 2000 : Approximation Theory
* 42: Fourier analysis
Fourier analysis studies approximations and decompositions of functions using trigonometric polynomials. Of incalculable value in many applications of analysis, this field has grown to include many specific and powerful results, including convergence criteria, estimates and inequalities, and existence and uniqueness results. Extensions include the theory of singular integrals, Fourier transforms, and the study of the appropriate function spaces. This heading also includes approximations by other orthogonal families of functions, including orthogonal polynomials and wavelets.
Fourier Analysis and Its Applications
Inside the FFT Black Box
Understanding the FFT
Understanding FFT Applications
Fourier Series, Transforms and Boundary Value Problems
Methods of Modern Mathematical Physics II: Fourier Analysis, Self-Adjointness
Fourier Analysis of Time Series : An Introduction
A Student's Guide to Fourier Transforms
Wavelets
An Introduction to Wavelets Through Linear Algebra
First Course in Wavelets with Fourier Analysis
Wavelets, Approximation, and Statistical Applications
A First Course on Wavelets
Ten Lectures on Wavelets, Daubechies
Abstract Harmonic Analysis of Continuous Wavelet Transforms
* 43: Abstract harmonic analysis
Harmonic Function Theory, Axler
An Introduction to Harmonic Analysis, Katznelson
An Introduction to Harmonic Analysis on Semisimple Lie Groups
Harmonic Analysis, Stein
* 44: Integral transforms, operational calculus
Integral Methods in Science and Engineering
* 45: Integral equations
Handbook of Integral Equations
Integral Equations: A Practical Treatment, from Spectral Theory to Applications
Integral Equations, Hochstadt
Volterra and Integral Equations of Vector Functions
Numerical Analysis 2000 : Ordinary Differential Equations and Integral Equations
* 46: Functional analysis
Here we mean the study of vector spaces of functions. This can include the abstract study of topological vector spaces as well as the study of particular spaces of interest, including attention to their bases (e.g. Fourier Analysis), and linear maps on them (e.g. Integral Transforms).
Functional Analysis Textbooks:
Functional analysis also called Modern Analysis is the study of infinite dimensional vector spaces (mainly Topological vector spaces), and mapping between these spaces (operators), transformations of these operators (e.g differential operators or self-adjoint operator), some approaches will associate algebraic structures (e.g ring structures such as Banach algebras and C-* algebras), an important application is Quantum mechanics.
Introductory Real Analysis, Kolmogorov ***
Functional analysis, Yoshida ***
Functional Analysis, Rudin *****
Functional Analysis in Modern Applied Mathematics, Curtain ***
Foundations of Modern Analysis, Friedman
Beginning Functional Analysis, Saxe *
Functional Analysis: An Introduction, Eidelman ****
Functional Analysis and Semigroups, Hille
A Course in Modern Analysis and its Applications, Cohen
Geometric Aspects of Functional Analysis, Milman
Applications
Physical questions (Especially quantum physics) helped in the development of Functional analysis, Modern Mathematical physics makes heavy use of functional analysis.
Methods of Modern Mathematical Physics, Functional Analysis, Reed *****
Functional Analysis in Mechanics, Lebedev
Operator Methods in Quantum Mechanics
Operator Algebras and Quantum Statistical Mechanics
Infinite Dimensional Groups and Algebras in Quantum Physics
Foundations of Quantum Mechanics *****
Infinite dimensional vector spaces
Topological vector spaces in general, Hilbert and Banach Spaces.
Topological Vector Spaces I, Koethe *****
Introduction to Hilbert Spaces with Applications *****
* 47: Operator theory
Theory of Operator Algebras, Takesaki
Theory of Linear Operators in Hilbert Space *****
Spectral Theory of Self-Adjoint Operators in Hilbert Space *****
Fundamentals of the Theory of Operator Algebras
Spectral Theory and Differential Operators
Lectures on Entire Operators, M.G. Kreins
An Invitation to C*-Algebras, Arveson
Hilbert C*-Modules : A Toolkit for Operator Algebraists
A Short Course on Spectral Theory *****
Spectral Theory and Nonlinear Functional Analysis
* 49: Calculus of variations and optimal control; optimization
Introduction To The Calculus Of Variations, Dacorogna
Calculus of Variations, Weinstock
Introduction to Optimization, Pedregal
Optimization, Lange
An Introduction to Optimization, Chong
Introduction to Linear Optimization
Convexity and Optimization in Rn
* 51: Geometry, including classic Euclidean geometry
51M: Real and complex geometry (also College Geometry)
Geometry Demystified
Fundamentals of College Geometry, Hemmerling
51N: Analytic and descriptive geometry
Exploring Analytical Geometry with Mathematica
Geometry Surveys
Introduction to Geometry, Coxeter *****
Geometry Revisited, Coxeter
Glimpses of Algebra and Geometry
Flavors of Geometry
Non-Euclidean Geometry, Coxeter
Geometry, Audin
* 52: Convex and discrete geometry
Handbook of Discrete and Computational Geometry
* 53: Differential geometry
Classical Differential Geometry:
Differential Geometry and Its Applications
Elements of Differential Geometry, Millman
Classical Differential Geometry of Curves and Surfaces
Modern Differential Geometry:
An Introduction to Differentiable Manifolds and Riemannian Geometry, Boothby
Natural Operations in Differential Geometry
Notes on differential geometry
A Panoramic View of Riemannian Geometry
The Geometry of Four-Manifolds
Gauge Theory and the Topology of Four-Manifolds
Index Theory, Coarse Geometry and Topology of Manifolds
Geometry, Topology and Physics
Curvature and Homology, Goldberg
Riemannian Geometry, do Carmo
Geometry and Billiards
Modern Differential Geometry for Physicists, Isham
Riemannian Geometry: A Beginner's Guide
* 54: General topology
Topology, Munkres *****
Elementary Concepts of Topology
Counterexamples in Topology *****
Lecture Notes on Elementary Topology and Geometry
Schaum's Outline of General Topology
* 55: Algebraic topology
A Concise Course in Algebraic Topology, May
Lectures on Algebraic Topology
Algebraic Topology: An Intuitive Approach, Sato
Algebraic Topology, Hatcher
Algebraic Topology from a Homotopical Viewpoint
Homotopical Algebra, Quillen
Algebraic Topology, Lefschetz
Simplicial Homotopy Theory
* 57: Manifolds and cell complexes
57M: Low-dimensional topology, including Knot theory
The Geometry and Physics of Knots
Knots and Surfaces, Gilbert
57N: Topological manifolds
Introduction to Topological Manifolds *****
57R: Differential topology
Differential Topology, Guillemin
Differential Topology, Hirsch
* 58: Global analysis, analysis on manifolds
Calculus on Manifolds, Spivak
Analysis on Manifolds, Munkres
Manifolds, Tensor Analysis, and Applications, Abraham
An Introduction to Differentiable Manifolds and Riemannian Geometry, Boothby
Introduction to Differentiable Manifolds, Lang
Foundations of differentiable Manifolds and Lie Groups, Warner
Differential Forms
Differential Forms : A Complement to Vector Calculus, Weintraub
Advanced Calculus : A Differential Forms Approach, Edwards
Differential Forms with Applications to the Physical Sciences
* 60: Probability theory and stochastic processes
60A: Foundations of probability theory
An Introduction to Probability Theory and Its Applications, Volume 1, Feller
Probability, Random Variables and Stochastic Processes, Papoulis
Schaum's Outline of Probability, Random Variables, and Random Processes
Introduction to Probability, Grinstead
Foundations of Modern Probability, Kallenberg
Probability Theory I and II, Loeve
Schaum's Outline of Theory and Problems of Probability and Statistics
Counterexamples in Probability
Probability : Theory and Examples
Probability and Statistical Inference
A Course in Probability Theory, Kai Lai Chung
Probability Theory : The Logic of Science
Probability: A Graduate Course
Basic Principles and Applications of Probability Theory, Skorokhod
Applied Probability, Lange
60Hxx Stochastic analysis
Stochastic Differential Equations, Oksendal
Stochastic Differential Equations and Applications
Introduction to Stochastic Integration
Stochastic Integration and Differential Equations, Protter
* 62: Statistics
* 65: Numerical analysis
Theoretical Numerical Analysis, A Functional Analysis Framework, Atkinson
Introduction to Numerical Analysis, Stoer
Numerical Analysis: The Mathematics of Scientific Computing
Elementary Numerical Analysis: An Algorithmic Approach
Numerical Analysis Using MATLAB and Spreadsheets
Applied Numerical Methods Using MATLAB
Numerical Methods Using MATLAB, Mathews
* 68: Computer science
* 70: Mechanics of particles and systems
* 74: Mechanics of deformable solids
* 76: Fluid mechanics
* 78: Optics, electromagnetic theory
* 80: Classical thermodynamics, heat transfer
* 81: Quantum Theory
* 82: Statistical mechanics, structure of matter
* 83: Relativity and gravitational theory
* 85: Astronomy and astrophysics
* 86: Geophysics
* 90: Operations research, mathematical programming
* 91: Game theory, economics, social and behavioral sciences
* 92: Biology and other natural sciences
* 93: Systems theory; control
* 94: Information and communication, circuits
* 97: Mathematics education
About This Guide
Why this Guide
This guide was created in an effort to classify the most important books in Mathematics here at ebooksclub.org. ebooksclub categories is so broad that it's almost inconvenient, but when you look for a certain topic in the many subtopics of mathematics, things gets little messy.
What is this Guide *NOT
This is not an exhaustive list of all Mathematics books at ebooksclub, it only highlights the famous, standard, helpful books around here. If you intend to search for a specific mathematics book, please refer to ebooksclub.org search facility.
Criticism
Please, your constructive criticism is all welcomed, but please this work is still requires much time and energy, for now I classify books for Top Level topics of MSC classification and it's of course still
Under Construction
You're welcome to suggest new books, correct classifications and all that.
About the classification
I use the AMS(Americal Mathematical Society)'s MSC 2000(Mathematical Subject Classification).
However I had to drift a little to include broad topics such as the so called College Algebra, College Geometry and all that.
The MSC classification is as the following
* 00: General material including elementary mathematics
* 01: History and biography
* 03: Mathematical logic and foundations
* 05: Combinatorics and graph theory
* 06: Order, lattices, ordered algebraic structures
* 08: General algebraic systems
* 11: Number theory
* 12: Field theory and polynomials
* 13: Commutative rings and algebras
* 14: Algebraic geometry
* 15: Linear and multilinear algebra; matrix theory
* 16: Associative rings and algebras
* 17: Nonassociative rings and algebras
* 18: Category theory, homological algebra
* 19: K-theory
* 20: Group theory and generalizations
* 22: Topological groups, Lie groups
* 26: Real functions and elementary calculus
* 28: Measure and integration
* 30: Functions of a complex variable
* 31: Potential theory
* 32: Several complex variables and analytic spaces
* 33: Special functions including trigonometric functions
* 34: Ordinary differential equations
* 35: Partial differential equations
* 37: Dynamical systems and ergodic theory
* 39: Difference and functional equations
* 40: Sequences, series, summability
* 41: Approximations and expansions
* 42: Fourier analysis
* 43: Abstract harmonic analysis
* 44: Integral transforms, operational calculus
* 45: Integral equations
* 46: Functional analysis
* 47: Operator theory
* 49: Calculus of variations and optimal control; optimization
* 51: Geometry, including classic Euclidean geometry
* 52: Convex and discrete geometry
* 53: Differential geometry
* 54: General topology
* 55: Algebraic topology
* 57: Manifolds and cell complexes
* 58: Global analysis, analysis on manifolds
* 60: Probability theory and stochastic processes
* 62: Statistics
* 65: Numerical analysis
* 68: Computer science
* 70: Mechanics of particles and systems
* 74: Mechanics of deformable solids
* 76: Fluid mechanics
* 78: Optics, electromagnetic theory
* 80: Classical thermodynamics, heat transfer
* 81: Quantum Theory
* 82: Statistical mechanics, structure of matter
* 83: Relativity and gravitational theory
* 85: Astronomy and astrophysics
* 86: Geophysics
* 90: Operations research, mathematical programming
* 91: Game theory, economics, social and behavioral sciences
* 92: Biology and other natural sciences
* 93: Systems theory; control
* 94: Information and communication, circuits
* 97: Mathematics education
* 00: General material including elementary mathematics
The Mathematics Subject Classification uses the classification 00 principally for non-subject-specific materials, such as conference proceedings, dictionaries, handbooks, and problem books. It also includes subject-specific items not typically noted in the Mathematical Reviews database by the AMS, such as elementary mathematics, recreational mathematics, and elementary applications of mathematics.
In general, such material is not included in this collection either. In many cases an occasion arises to treat an elementary question in a non-elementary way, and to so illustrate some branch of more advanced mathematics. When such an illustration is saved in this collection, it is classified according to the tool used (contrary to AMS guidelines for the use of the MSC!).
00A05: General mathematics
What Is Mathematics?: An Elementary Approach to Ideas and Methods
The Mathematics of Infinity: A Guide to Great Ideas (Good as a supplement)
Abel's Theorem in Problems and Solutions
Abel's Proof: An Essay on the Sources and Meaning of Mathematical Unsolvability
The Four-Color Theorem : History, Topological Foundations, and Idea of Proof
Kepler's Conjecture: How Some of the Greatest Minds in History Helped Solve One of the Oldest Math Problems in the World
College Algebra
Personally I don't consider this category as Algebra per se, it even discusses topics outside Algebra entirely as part of Algebra (such as Graphs, Sequences and so...)
College Algebra, Blitzer, Third Edition
College Algebra Demystified
Inner Algebra
Algebra Demystified
Schaum's Easy Outline Intermediate Algebra
501 Algebra Questions
Just in Time Algebra
Algebra Success In 20 Minutes A Day
Pre-Algebra Demystified
Schaum's Outline of College Mathematics
Problem Solving
Discusses techniques either explicitly or through problems, lots of categories overlap here, from Combinatorics and Algebra to Geometry and The Calculus, even Evolutionary Algorithms.
Problem-Solving Strategies *****
Problem Solving Through Problems *****
Mathematical Problems and Proofs : Combinatorics, Number Theory, and Geometry *****
Polynomials, Barbeau *****
Solving Equations With Physical Understanding
Engineering Problem Solving : A Classical Perspective
The IMO Compendium: A Collection of Problems Suggested for The International Mathematical Olympiads: 1959-2004 *****
How to Solve It: Modern Heuristics
103 Trigonometry Problems: From the Training of the USA IMO Team*****
How to Solve Word Problems in Calculus
Master Math : Solving Word Problems
* 01: History and biography
Unknown Quantity: A Real And Imaginary History of Algebra, Derbyshire
A Mathematician's Apology, Hardy
* 03: Mathematical logic and foundations
Set theory
Elements of Set theory, Enderton
Introduction to Set Theory, Hrbacek
Lectures in Logic and Set Theory, Tourlakis
Set Theory : Boolean-Valued Models and Independence Proofs, Bell
Mathematical Logic
Mathematical Logic, Ebbinghaus *****
A Mathematical Introduction to Logic, Enderton *****
Modal Logic, Chagrov
Language, Proof, and Logic
Incompleteness: The Proof and Paradox of Kurt Godel
Godel's Proof *****
Proof Writing
Usually discusses Set Theory, First order logic, and Number systems beside of course proof writing *techniques*.
Bridge to Abstract Mathematics
Math Proofs Demystified
Basic Concepts of Mathematics (No ISBN, Go to trillia.com)
Proofs from the Book
Note: This book isn't really about proof writing, but rather shows beautiful proofs in mathematics, should be used for inspiration.
* 05: Combinatorics and graph theory
TextBooks
Discrete Mathematics and its Applications, Rosen
Discrete and Combinatorial Mathematics: An Applied Introduction, Grimaldi
Discrete Mathematics, Lovasz
A First Course in Discrete Mathematics, Anderson
Discrete Mathematics for New Technology
Schaum's Outline of Discrete Mathematics
Handbook of Discrete and Combinatorial Mathematics
Concrete Mathematics, Knuth
Combinatorics
Combinatorics, Merris
Combinatorics : Topics, Techniques, Algorithms
Enumerative Combinatorics, Stanley
Handbook of Combinatorics, Graham
Combinatorial Species and Tree-like Structures
Graph theory
Fractional Graph Theory: A Rational Approach to the Theory of Graphs
Graph Theory With Applications
Algebraic Graph Theory
Graph Theory, Diestel
Eigenspaces of Graphs
Graph Algorithms and Applications
Modern Graph Theory, Bollobas
* 06: Order, lattices, ordered algebraic structures
* 08: General algebraic systems
* 11: Number theory
An Introduction to the Theory of Numbers, Hardy
Problems in Algebraic Number Theory
Analytic Number Theory, Newman
Transcendental Number Theory
Introduction to Analytic Number Theory, Apostol *****
Advanced Number Theory, Cohn
Elementary Methods in Number Theory, Nathanson
Analytic Number Theory: An Introductory Course
A Course in Number Theory and Cryptography
Number Theory, Shafarevich
The Book of Numbers, John Horton Conway *****
On Numbers and Games, John Horton Conway *****
Popular Level
Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics *****
* 12: Field theory and polynomials
Abstract Algebra(Undergraduate level):
A Survey of Modern Algebra, MacLange
Algebra I, Basic Notions of Algebra, Shafarevich
Abstract Algebra (3rd Edition), Dummit and Foote
Applications of Abstract Algebra with MAPLE, Klima
Modern Algebra with Applications, Gilbert
Lectures in Abstract Algebra: Basic Concepts, Jacobson
Schaum's Outline of Abstract Algebra
Abstract Algebra Textbooks(Graduate level)
Algebra, Lang
Advanced Modern Algebra, Rotman
Algebra: A Graduate Course, Isaacs
* 13: Commutative rings and algebras
Introduction to Commutative Algebra, Atiyah
Undergraduate Commutative Algebra, Reid
Computational Commutative Algebra 1
Commutative Algebra : with a View Toward Algebraic Geometry
Computational Aspects of Commutative Algebra: From a Special Issue of the Journal of Symbolic Computation 1989
Grobner Bases: A Computational Approach to Commutative Algebra
Combinatorial Commutative Algebra
Matrices over Commutative Rings
Commutative Algebra, Matsumura
* 14: Algebraic geometry
Undergraduate Algebraic Geometry, Reid
Algebraic Geometry : A First Course, Harris
Sheaves in Geometry and Logic : A First Introduction to Topos Theory
The Geometry of Schemes, Harris
Commutative Algebra : with a View Toward Algebraic Geometry
Algebraic Geometry, Bump
Algebraic Geometry 1: From Algebraic Varieties to Schemes
Algebraic Geometry, Hartshorne
Principles of Algebraic Geometry, Griffiths and Harris
Basic Algebraic Geometry 1: Varieties in Projective Space, Shafarevich
Basic Algebraic Geometry 2: Schemes and Complex Manifolds, Shafarevich
* 15: Linear and multilinear algebra; matrix theory
Linear Algebra (Abstract)
Finite Dimensional Vector Spaces
Linear Algebra, Hoffman
Linear Algebra Done right, Axler
Lectures in Abstract Algebra Vol 2 Linear Algebra, Jacobson
Linear Algebra : Gateway to Mathematics, Messer
Linear Algebra (Less Abstract, More Applications)
Linear Algebra and It's Applications, Strang
Applied Linear Algebra and Matrix Analysis, Shores
Schaum's Outline of Theory and Problems of Linear Algebra, Lipschutz
Matrix Analysis and Applied Linear Algebra, Meyer
Applied Numerical Algebra, Demmel
Applied Linear Algebra, Usmani
* 16: Associative rings and algebras
* 17: Nonassociative rings and algebras
* 18: Category theory, homological algebra
Categories for the Working Mathematician, MacLane
Abelian Categories: An Introduction to the Theory of Functors
Categories and functors, Pareigis
Methods of Homological Algebra
A Course in Homological Algebra
An Elementary Approach to Homological Algebra
* 19: K-theory
* 20: Group theory and generalizations
Linear Groups with an Exposition of Galois Field Theory
Group Rings, Crossed Products, and Galois Theory
The Classification of the Finite Simple Groups
The theory of groups, Kurosh
Problems in Group Theory, Dixon
* 22: Topological groups, Lie groups
Lie Groups, Lie Algebras, and Representations, Hall
Matrix Groups, Baker
Lectures on Lie Groups, Hsiang
* 26: Real functions and elementary calculus
Elementary Calculus
Topics in Calculus include Continuity, Differentiation, Integration, Sequences, Series. The Calculus is developed using basic results of Geometry and Algebra without usage of point set topology. Limits will be studies/used extensively (Formal epsilon delta proofs not usually discussed in detail). Basic results of Calculus will be studies on Algebraic functions (Polynomials, Rational, Power) and Elementary transcendental functions (Logariths, Exponentials, Trigonometrics). Applications to the physical sciences to illustrate the power of the Calculus. Some courses will also Analytic Geometry along the way. Multi Variable Calculus will mostly use 3D Geometry to develop intuition, further generalization to higher dimensions most likely will be studied in a later course (usually Global Analysis). Some Elementary Numerical methods will be discussed without further study of error analysis.
Calculus, Vol. 1. Apostol *****
Calculus, Vol. 2. Apostol *****
Foundations of Differential Calculus, Euler
A Course of Pure Mathematics, Hardy *****
Foundations of Analysis, Landau ****
Inside Calculus ****
Calculus, Stewart
Calculus : Early Transcendentals, Stewart ***
Calculus, Gilbert Strang (MIT)
Schaum's Outline of Beginning Calculus
Calculus unlimited
Elementary Calculus: An Infinitesimal Approach
Advanced Calculus, Loomis
On the Shoulders of Giants: A Course in Single Variable Calculus
Calculus (Cliffs Quick Review)
Calculus for the Utterly Confused
Calculus: Single Variable, Smith and Minton
Schaum's Outline of Theory and Problems of Advanced Calculus
Advanced Calculus, Kaplan
Advanced Calculus with Applications in Statistics
Calculus of Vector Functions
Calculus Demystified
Schaum's Outline of Advanced Calculus
Introductory Mathematical Analysis:
Studies The Calculus in a rigorous, formal and generalized manner. (not too generalization however)
Basic Elements of Real Analysis, Protter ***
Real Mathematical Analysis, Pugh *****
Principles of Mathematical Analysis, Rudin *****
Mathematical Analysis, Apostol *****
* 28: Measure and integration
The Lebesgue-Stieltjes Integral : A Practical Introduction
The Elements of Integration and Lebesgue Measure *****
Real and Complex Analysis, Rudin *****
Real Analysis, Royden *****
Real Analysis, Lang ***
Measure theory and fine properties of functions, Evans *****
Measure, Integral and Probability, Capinski ****
Measure and Integral, Wheeden and Zygmund *****
Schaum's Outline of Theory and Problems of Real Variables; Lebesgue Measure and Integration With Applications to Fourier Series **
* 30: Functions of a complex variable
Elementary Textbooks:
Complex Analysis (Theory of analytic functions) at a level suitable for Undergraduate study where real analysis rerequisites.
A First Course in Complex Analysis with Applications, Zill
Calculus with Complex Numbers, Reade
Standard Textbooks:
Complex Analysis, Ahlfors *****
A Course of Modern Analysis, Whittaker and Watson ***** (A Classic for Transcendenting functions)
Complex Analysis through examplex and Exercises, Pap
Functions of One Complex Variable, Conway
Complex Variables and the Laplace Transform for Engineers, LePage
* 31: Potential theory
* 32: Several complex variables and analytic spaces
Several Complex Variables, Schneider
* 33: Special functions including trigonometric functions
Special Functions, Andrews
Orthogonal Polynomials and Special Functions, Askey
On a Class of Incomplete Gamma Functions with Applications
Chebyshev Polynomials, Mason
* 34: Ordinary differential equations
Introductory Differential Equations
Elementary Differential Equations and Boundary Value Problems, Boyce and DiPrima
Schaum's Easy Outline Differential Equations
Handbook of Differential Equations, Zwillinger
Schaum's Outline of Differential Equations
Differential Equations Demystified
Ordinary Differential Equations, Arnold
Differential Equations, Dynamical Systems, and Linear Algebra, Hirsch
Ordinary Differential Equations, Hartman
Numerical Solutions for Differential Equations
Ordinary and Partial Differential Equation Routines in C, C++, Fortran, Java, Maple, and MATLAB
Scientific Computing and Differential Equations : An Introduction to Numerical Methods
Numerical Methods for Ordinary Differential Equations
Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations
Generalized Difference Methods for Differential Equations: Numerical Analysis of Finite Volume Methods
Numerical Methods for Elliptic and Parabolic Partial Differential Equations
Numerical Methods for Partial Differential Equations
Boundary and Finite Elements: Theory and Problems
* 35: Partial differential equations
An Introduction to Partial Differential Equations, Renardy
Introduction to Partial Differential Equations. : A Computational Approach
Lectures on Partial Differential Equations, V. I. Arnold
Partial Differential Equations, Evans
A First Course in Partial Differential Equations With Complex Variables and Transform Methods, Weinberger
Hilbert Space Methods for Partial Differential Equations
Nonlinear Partial Differential Equations for Scientists and Engineers
Partial Differential Equations and the Finite Element Method
Handbook of Linear Partial Differential Equations for Engineers and Scientists
Handbook of Nonlinear Partial Differential Equations
Partial Differential Equations, Volumes I, II, III by Taylor
Elementary Applied Partial Differential Equations: With Fourier Series and Boundary Value Problems
* 37: Dynamical systems and ergodic theory
Invitation to Dynamical Systems
Introduction to Dynamical Systems
Lectures on Chaotic Dynamical Systems
An Introduction to Chaotic Dynamical Systems *****
Dynamical Systems[img=http://www.ebooksclub.org/images/emoticons/icon_biggrin.gif a=biggrin][/img]ifferential Equations, Maps and Chaotic Behavior
Dynamical Systems, Birkhoff
Dynamical Systems and Ergodic Theory
Mathematics of dynamical systems
Chaos in Dynamical Systems
Introduction to Applied Nonlinear Dynamical Systems and Chaos
Fractals
Fractal Geometry : Mathematical Foundations and Applications, Falconer
Techniques in Fractal Geometry, Falconer
Fractal Geometry and Stochastics
* 39: Difference and functional equations
Difference Equations and Inequalities: Theory, Methods, and Applications
Lectures on Functional Equations and Their Applications
Difference Equations with Applications to Queues
Functional equations in a single variable, Kuczma
* 40: Sequences, series, summability
* 41: Approximations and expansions
Numerical Analysis 2000 : Approximation Theory
* 42: Fourier analysis
Fourier analysis studies approximations and decompositions of functions using trigonometric polynomials. Of incalculable value in many applications of analysis, this field has grown to include many specific and powerful results, including convergence criteria, estimates and inequalities, and existence and uniqueness results. Extensions include the theory of singular integrals, Fourier transforms, and the study of the appropriate function spaces. This heading also includes approximations by other orthogonal families of functions, including orthogonal polynomials and wavelets.
Fourier Analysis and Its Applications
Inside the FFT Black Box
Understanding the FFT
Understanding FFT Applications
Fourier Series, Transforms and Boundary Value Problems
Methods of Modern Mathematical Physics II: Fourier Analysis, Self-Adjointness
Fourier Analysis of Time Series : An Introduction
A Student's Guide to Fourier Transforms
Wavelets
An Introduction to Wavelets Through Linear Algebra
First Course in Wavelets with Fourier Analysis
Wavelets, Approximation, and Statistical Applications
A First Course on Wavelets
Ten Lectures on Wavelets, Daubechies
Abstract Harmonic Analysis of Continuous Wavelet Transforms
* 43: Abstract harmonic analysis
Harmonic Function Theory, Axler
An Introduction to Harmonic Analysis, Katznelson
An Introduction to Harmonic Analysis on Semisimple Lie Groups
Harmonic Analysis, Stein
* 44: Integral transforms, operational calculus
Integral Methods in Science and Engineering
* 45: Integral equations
Handbook of Integral Equations
Integral Equations: A Practical Treatment, from Spectral Theory to Applications
Integral Equations, Hochstadt
Volterra and Integral Equations of Vector Functions
Numerical Analysis 2000 : Ordinary Differential Equations and Integral Equations
* 46: Functional analysis
Here we mean the study of vector spaces of functions. This can include the abstract study of topological vector spaces as well as the study of particular spaces of interest, including attention to their bases (e.g. Fourier Analysis), and linear maps on them (e.g. Integral Transforms).
Functional Analysis Textbooks:
Functional analysis also called Modern Analysis is the study of infinite dimensional vector spaces (mainly Topological vector spaces), and mapping between these spaces (operators), transformations of these operators (e.g differential operators or self-adjoint operator), some approaches will associate algebraic structures (e.g ring structures such as Banach algebras and C-* algebras), an important application is Quantum mechanics.
Introductory Real Analysis, Kolmogorov ***
Functional analysis, Yoshida ***
Functional Analysis, Rudin *****
Functional Analysis in Modern Applied Mathematics, Curtain ***
Foundations of Modern Analysis, Friedman
Beginning Functional Analysis, Saxe *
Functional Analysis: An Introduction, Eidelman ****
Functional Analysis and Semigroups, Hille
A Course in Modern Analysis and its Applications, Cohen
Geometric Aspects of Functional Analysis, Milman
Applications
Physical questions (Especially quantum physics) helped in the development of Functional analysis, Modern Mathematical physics makes heavy use of functional analysis.
Methods of Modern Mathematical Physics, Functional Analysis, Reed *****
Functional Analysis in Mechanics, Lebedev
Operator Methods in Quantum Mechanics
Operator Algebras and Quantum Statistical Mechanics
Infinite Dimensional Groups and Algebras in Quantum Physics
Foundations of Quantum Mechanics *****
Infinite dimensional vector spaces
Topological vector spaces in general, Hilbert and Banach Spaces.
Topological Vector Spaces I, Koethe *****
Introduction to Hilbert Spaces with Applications *****
* 47: Operator theory
Theory of Operator Algebras, Takesaki
Theory of Linear Operators in Hilbert Space *****
Spectral Theory of Self-Adjoint Operators in Hilbert Space *****
Fundamentals of the Theory of Operator Algebras
Spectral Theory and Differential Operators
Lectures on Entire Operators, M.G. Kreins
An Invitation to C*-Algebras, Arveson
Hilbert C*-Modules : A Toolkit for Operator Algebraists
A Short Course on Spectral Theory *****
Spectral Theory and Nonlinear Functional Analysis
* 49: Calculus of variations and optimal control; optimization
Introduction To The Calculus Of Variations, Dacorogna
Calculus of Variations, Weinstock
Introduction to Optimization, Pedregal
Optimization, Lange
An Introduction to Optimization, Chong
Introduction to Linear Optimization
Convexity and Optimization in Rn
* 51: Geometry, including classic Euclidean geometry
51M: Real and complex geometry (also College Geometry)
Geometry Demystified
Fundamentals of College Geometry, Hemmerling
51N: Analytic and descriptive geometry
Exploring Analytical Geometry with Mathematica
Geometry Surveys
Introduction to Geometry, Coxeter *****
Geometry Revisited, Coxeter
Glimpses of Algebra and Geometry
Flavors of Geometry
Non-Euclidean Geometry, Coxeter
Geometry, Audin
* 52: Convex and discrete geometry
Handbook of Discrete and Computational Geometry
* 53: Differential geometry
Classical Differential Geometry:
Differential Geometry and Its Applications
Elements of Differential Geometry, Millman
Classical Differential Geometry of Curves and Surfaces
Modern Differential Geometry:
An Introduction to Differentiable Manifolds and Riemannian Geometry, Boothby
Natural Operations in Differential Geometry
Notes on differential geometry
A Panoramic View of Riemannian Geometry
The Geometry of Four-Manifolds
Gauge Theory and the Topology of Four-Manifolds
Index Theory, Coarse Geometry and Topology of Manifolds
Geometry, Topology and Physics
Curvature and Homology, Goldberg
Riemannian Geometry, do Carmo
Geometry and Billiards
Modern Differential Geometry for Physicists, Isham
Riemannian Geometry: A Beginner's Guide
* 54: General topology
Topology, Munkres *****
Elementary Concepts of Topology
Counterexamples in Topology *****
Lecture Notes on Elementary Topology and Geometry
Schaum's Outline of General Topology
* 55: Algebraic topology
A Concise Course in Algebraic Topology, May
Lectures on Algebraic Topology
Algebraic Topology: An Intuitive Approach, Sato
Algebraic Topology, Hatcher
Algebraic Topology from a Homotopical Viewpoint
Homotopical Algebra, Quillen
Algebraic Topology, Lefschetz
Simplicial Homotopy Theory
* 57: Manifolds and cell complexes
57M: Low-dimensional topology, including Knot theory
The Geometry and Physics of Knots
Knots and Surfaces, Gilbert
57N: Topological manifolds
Introduction to Topological Manifolds *****
57R: Differential topology
Differential Topology, Guillemin
Differential Topology, Hirsch
* 58: Global analysis, analysis on manifolds
Calculus on Manifolds, Spivak
Analysis on Manifolds, Munkres
Manifolds, Tensor Analysis, and Applications, Abraham
An Introduction to Differentiable Manifolds and Riemannian Geometry, Boothby
Introduction to Differentiable Manifolds, Lang
Foundations of differentiable Manifolds and Lie Groups, Warner
Differential Forms
Differential Forms : A Complement to Vector Calculus, Weintraub
Advanced Calculus : A Differential Forms Approach, Edwards
Differential Forms with Applications to the Physical Sciences
* 60: Probability theory and stochastic processes
60A: Foundations of probability theory
An Introduction to Probability Theory and Its Applications, Volume 1, Feller
Probability, Random Variables and Stochastic Processes, Papoulis
Schaum's Outline of Probability, Random Variables, and Random Processes
Introduction to Probability, Grinstead
Foundations of Modern Probability, Kallenberg
Probability Theory I and II, Loeve
Schaum's Outline of Theory and Problems of Probability and Statistics
Counterexamples in Probability
Probability : Theory and Examples
Probability and Statistical Inference
A Course in Probability Theory, Kai Lai Chung
Probability Theory : The Logic of Science
Probability: A Graduate Course
Basic Principles and Applications of Probability Theory, Skorokhod
Applied Probability, Lange
60Hxx Stochastic analysis
Stochastic Differential Equations, Oksendal
Stochastic Differential Equations and Applications
Introduction to Stochastic Integration
Stochastic Integration and Differential Equations, Protter
* 62: Statistics
* 65: Numerical analysis
Theoretical Numerical Analysis, A Functional Analysis Framework, Atkinson
Introduction to Numerical Analysis, Stoer
Numerical Analysis: The Mathematics of Scientific Computing
Elementary Numerical Analysis: An Algorithmic Approach
Numerical Analysis Using MATLAB and Spreadsheets
Applied Numerical Methods Using MATLAB
Numerical Methods Using MATLAB, Mathews
* 68: Computer science
* 70: Mechanics of particles and systems
* 74: Mechanics of deformable solids
* 76: Fluid mechanics
* 78: Optics, electromagnetic theory
* 80: Classical thermodynamics, heat transfer
* 81: Quantum Theory
* 82: Statistical mechanics, structure of matter
* 83: Relativity and gravitational theory
* 85: Astronomy and astrophysics
* 86: Geophysics
* 90: Operations research, mathematical programming
* 91: Game theory, economics, social and behavioral sciences
* 92: Biology and other natural sciences
* 93: Systems theory; control
* 94: Information and communication, circuits
* 97: Mathematics education
Monday, September 25, 2006
《短歌行》----曹操
对酒当歌,人生几何? 譬如朝露,去日苦多。 慨当以慷,忧思难忘。 何以解忧?唯有杜康。 青青子衿,悠悠我心。 但为君故,沈吟至今。 呦呦鹿鸣,食野之苹。 我有嘉宾,鼓瑟吹笙。 明明如月,何时可掇? 忧从中来,不可断绝。 越陌度阡,枉用相存。 契阔谈宴,心念旧恩。 月明星稀,乌鹊南飞, 绕树三匝,何枝可依? 山不厌高,海不厌深。 周公吐哺,天下归心。
《短歌行》是汉乐府的旧题,属于《相和歌·平调曲》。这就是说它本来是一个乐曲的名称,这种乐曲怎么唱法,现在当然是不知道了。但乐府《相和歌·平调曲》中除了《短歌行》还有《长歌行》,唐代吴兢《乐府古题要解》引证古诗“长歌正激烈”,魏文帝曹丕《燕歌行》“短歌微吟不能长”和晋代傅玄《艳歌行》“咄来长歌续短歌”等句,认为“长歌”、“短歌”是指“歌声有长短”。我们现在也就只能根据这一点点材料来理解《短歌行》的音乐特点。《短歌行》这个乐曲,原来当然也有相应的歌辞,就是“乐府古辞”,但这古辞已经失传了。现在所能见到的最早的《短歌行》就是曹操所作的拟乐府《短歌行》。所谓“拟乐府”就是运用乐府旧曲来补作新词,曹操传世的《短歌行》共有两首,这里要介绍的是其中的第一首。
这首《短歌行》的主题非常明确,就是作者希望有大量人才来为自己所用。曹操在其政治活动中,为了扩大他在庶族地主中的统治基础,打击反动的世袭豪强势力,曾大力强调“唯才是举”,为此而先后发布了“求贤令”、“举士令”、“求逸才令”等;而《短歌行》实际上就是一曲“求贤歌”、又正因为运用了诗歌的形式,含有丰富的抒情成分,所以就能起到独特的感染作用,有力地宣传了他所坚持的主张,配合了他所颁发的政令。
对酒当歌,人生几何?譬如朝露,去日苦多。慨当以慷,幽思难忘。何以解忧,唯有杜康。 在这八句中,作者强调他非常发愁,愁得不得了。那么愁的是什么呢?原来他是苦于得不到众多的“贤才”来同他合作,一道抓紧时间建功立业。试想连曹操这样位高权重的人居然在那里为“求贤”而发愁,那该有多大的宣传作用。假如庶族地主中真有“贤才”的话,看了这些话就不能不大受感动和鼓舞。他们正苦于找不到出路呢,没有想到曹操却在那里渴求人才,于是那真正有才或自以为有才的许许多多人,就很有可能跃跃欲试,向他“归心”了。 “对酒当歌”八句,猛一看很象是《古诗十九首》中的消极调子,而其实大不相同。这里讲“人生几何”,不是叫人“及时行乐”,而是要及时地建功立业。又从表面上看,曹操是在抒个人之情,发愁时间过得太快,恐怕来不及有所作为。实际上却是在巧妙地感染广大“贤才”,提醒他们人生就象“朝露”那样易于消失,岁月流逝已经很多,应该赶紧拿定主意,到我这里来施展抱负。所以一经分析便不难看出,诗中浓郁的抒情气氛包含了相当强烈的政治目的。这样积极的目的而故意要用低沉的调子来发端,这固然表明曹操真有他的愁思,所以才说得真切;但另一方面也正因为通过这样的调子更能打开处于下层、多历艰难、又急于寻找出路的人士的心扉。所以说用意和遣词既是真切的,也是巧妙的。在这八句诗中,主要的情感特征就是一个“愁”字,“愁”到需要用酒来消解(“杜康”相传是最早造酒的人,这里就用他的名字来作酒的代称)。“愁”这种感情本身是无法评价的,能够评价的只是这种情感的客观内容,也就是为什么而“愁”。由于自私、颓废、甚至反动的缘故而愁,那么这愁就是一种消极的感情;反之,为着某种有进步意义的目的而愁,那就成为一种积极的情感。放到具体的历史背景中看,曹操在这里所表达的愁绪就是属于后者,应该得到恰当的历史评价。清人陈沆在《诗比兴笺》中说:“此诗即汉高《大风歌》思猛士之旨也。‘人生几何’发端,盖传所谓古之王者知寿命之不长,故并建圣哲,以贻后嗣。”这可以说基本上懂得了曹操发愁的含意;不过所谓“并建圣哲,以贻后嗣”还未免说得迂远。曹操当时考虑的是要在他自己这一生中结束战乱,统一全中国。与汉高祖唱《大风歌》是既有相通之处,也有不同之处的。
青青子衿,悠悠我心。但为君故,沈吟至今。呦呦鹿鸣,食野之苹。我有嘉宾,鼓瑟吹笙。 这八句情味更加缠绵深长了。“青青”二句原来是《诗经·郑风·子衿》中的话,原诗是写一个姑娘在思念她的爱人,其中第一章的四句是:“青青子衿,悠悠我心。纵我不往,子宁不嗣音?”(你那青青的衣领啊,深深萦回在我的心灵。虽然我不能去找你,你为什么不主动给我音信?)曹操在这里引用这首诗,而且还说自己一直低低地吟诵它,这实在是太巧妙了。他说“青青子衿,悠悠我心”,固然是直接比喻了对“贤才”的思念;但更重要的是他所省掉的两句话:“纵我不往,子宁不嗣音?”曹操由于事实上不可能一个一个地去找那些“贤才”,所以他便用这种含蓄的方法来提醒他们:“就算我没有去找你们,你们为什么不主动来投奔我呢?”由这一层含而不露的意思可以看出,他那“求才”的用心实在是太周到了,的确具有感人的力量。而这感人力量正体现了文艺创作的政治性与艺术性的结合。他这种深细婉转的用心,在《求贤令》之类的文件中当然无法尽情表达;而《短歌行》作为一首诗,就能抒发政治文件所不能抒发的感情,起到政治文件所不能起的作用。紧接着他又引用《诗经·小雅·鹿鸣》中的四句,描写宾主欢宴的情景,意思是说只要你们到我这里来,我是一定会待以“嘉宾”之礼的,我们是能够欢快融洽地相处并合作的。这八句仍然没有明确地说出“求才”二字,因为曹操所写的是诗,所以用了典故来作比喻,这就是“婉而多讽”的表现方法。同时,“但为君故”这个“君”字,在曹操的诗中也具有典型意义。本来在《诗经》中,这“君”只是指一个具体的人;而在这里则具有了广泛的意义:在当时凡是读到曹操此诗的“贤士”,都可以自认为他就是曹操为之沈吟《子衿》一诗的思念对象。正因为这样,此诗流传开去,才会起到巨大的社会作用。
明明如月,何时可掇?忧从中来,不可断绝。越陌度阡,枉用相存。契阔谈,心念旧恩。 这八句是对以上十六句的强调和照应。以上十六句主要讲了两个意思,即为求贤而愁,又表示要待贤以礼。倘若借用音乐来作比,这可以说是全诗中的两个“主题旋律”,而“明明如月”八句就是这两个“主题旋律”的复现和变奏。前四句又在讲忧愁,是照应第一个八句;后四句讲“贤才”到来,是照应第二个八句。表面看来,意思上是与前十六句重复的,但实际上由于“主题旋律”的复现和变奏,因此使全诗更有抑扬低昂、反复咏叹之致,加强了抒情的浓度。再从表达诗的文学主题来看,这八句也不是简单重复,而是含有深意的。那就是说“贤才”已经来了不少,我们也合作得很融洽;然而我并不满足,我仍在为求贤而发愁,希望有更多的“贤才”到来。天上的明月常在运行,不会停止(“掇”通“辍”,“晋乐所奏”的《短歌行》正作“辍”,即停止的意思);同样,我的求贤之思也是不会断绝的。说这种话又是用心周到的表现,因为曹操不断在延揽人才,那么后来者会不会顾虑“人满为患”呢?所以曹操在这里进一步表示,他的求贤之心就象明月常行那样不会终止,人们也就不必要有什么顾虑,早来晚来都一样会受到优待。关于这一点作者在下文还要有更加明确的表示,这里不过是承上启下,起到过渡与衬垫的作用。
月明星稀,乌鹊南飞,绕树三匝,何枝可依?山不厌高,海不厌深,周公吐哺,天下归心。 “月明”四句既是准确而形象的写景笔墨,同时也有比喻的深意。清人沈德潜在《古诗源》中说:“月明星稀四句,喻客子无所依托。”这说明他看出了这四句是比喻,但光说“客子”未免空泛;实际上这是指那些犹豫不定的人才,他们在三国鼎立的局面下一时无所适从。所以曹操以乌鹊绕树、“何枝可依”的情景来启发他们,不要三心二意,要善于择枝而栖,赶紧到自己这一边来。这四句诗生动刻画了那些犹豫徬徨者的处境与心情,然而作者不仅丝毫未加指责,反而在浓郁的诗意中透露着对这一些人的关心和同情。这恰恰说明曹操很会做思想工作,完全是以通情达理的姿态来吸引和争取人才。而象这样一种情味,也是充分发挥了诗歌所特有的感染作用。最后四句画龙点睛,明明白白地披肝沥胆,希望人才都来归我,确切地点明了本诗的主题。“周公吐哺”的典故出于《韩诗外传》,据说周公自言:“吾文王之子,武王之弟,成王之叔父也;又相天下,吾于天下亦不轻矣。然一沐三握发,一饭三吐哺,犹恐失天下之士。”周公为了接待天下之士,有时洗一次头,吃一顿饭,都曾中断数次,这种传说当然是太夸张了。不过这个典故用在这里却是突出地表现了作者求贤若渴的心情。“山不厌高,海不厌深”二句也是通过比喻极有说服力地表现了人才越多越好,决不会有“人满之患”。所以陈沆说:“鸟则择木,木岂能择鸟?天下三分,士不北走,则南驰耳。分奔蜀吴,栖皇未定,若非吐哺折节,何以来之?山不厌土,故能成其高;海不厌水,故能成其深;王者不厌士,故天下归心。”(亦见《诗比兴笺》)这些话是很有助于说明本诗的背景、主题以及最后各句之意的。
总起来说,《短歌行》正象曹操的其它诗作如《蒿里行》、《对酒》、《苦寒行》等一样,是政治性很强的诗作,主要是为曹操当时所实行的政治路线和政策策略服务的;然而它那政治内容和意义却完全熔铸在浓郁的抒情意境之中,全诗充分发挥了诗歌创作的特长,准确而巧妙地运用了比兴手法,来达到寓理于情,以情感人的目的。在曹操的时代,他就已经能够按照抒情诗的特殊规律来取得预期的社会效果,这一创作经验显然是值得借鉴的。同时因为曹操在当时强调“唯才是举”有一定的进步意义,所以他对“求贤”这一主题所作的高度艺术化的表现,也应得到历史的肯定。
《短歌行》是汉乐府的旧题,属于《相和歌·平调曲》。这就是说它本来是一个乐曲的名称,这种乐曲怎么唱法,现在当然是不知道了。但乐府《相和歌·平调曲》中除了《短歌行》还有《长歌行》,唐代吴兢《乐府古题要解》引证古诗“长歌正激烈”,魏文帝曹丕《燕歌行》“短歌微吟不能长”和晋代傅玄《艳歌行》“咄来长歌续短歌”等句,认为“长歌”、“短歌”是指“歌声有长短”。我们现在也就只能根据这一点点材料来理解《短歌行》的音乐特点。《短歌行》这个乐曲,原来当然也有相应的歌辞,就是“乐府古辞”,但这古辞已经失传了。现在所能见到的最早的《短歌行》就是曹操所作的拟乐府《短歌行》。所谓“拟乐府”就是运用乐府旧曲来补作新词,曹操传世的《短歌行》共有两首,这里要介绍的是其中的第一首。
这首《短歌行》的主题非常明确,就是作者希望有大量人才来为自己所用。曹操在其政治活动中,为了扩大他在庶族地主中的统治基础,打击反动的世袭豪强势力,曾大力强调“唯才是举”,为此而先后发布了“求贤令”、“举士令”、“求逸才令”等;而《短歌行》实际上就是一曲“求贤歌”、又正因为运用了诗歌的形式,含有丰富的抒情成分,所以就能起到独特的感染作用,有力地宣传了他所坚持的主张,配合了他所颁发的政令。
对酒当歌,人生几何?譬如朝露,去日苦多。慨当以慷,幽思难忘。何以解忧,唯有杜康。 在这八句中,作者强调他非常发愁,愁得不得了。那么愁的是什么呢?原来他是苦于得不到众多的“贤才”来同他合作,一道抓紧时间建功立业。试想连曹操这样位高权重的人居然在那里为“求贤”而发愁,那该有多大的宣传作用。假如庶族地主中真有“贤才”的话,看了这些话就不能不大受感动和鼓舞。他们正苦于找不到出路呢,没有想到曹操却在那里渴求人才,于是那真正有才或自以为有才的许许多多人,就很有可能跃跃欲试,向他“归心”了。 “对酒当歌”八句,猛一看很象是《古诗十九首》中的消极调子,而其实大不相同。这里讲“人生几何”,不是叫人“及时行乐”,而是要及时地建功立业。又从表面上看,曹操是在抒个人之情,发愁时间过得太快,恐怕来不及有所作为。实际上却是在巧妙地感染广大“贤才”,提醒他们人生就象“朝露”那样易于消失,岁月流逝已经很多,应该赶紧拿定主意,到我这里来施展抱负。所以一经分析便不难看出,诗中浓郁的抒情气氛包含了相当强烈的政治目的。这样积极的目的而故意要用低沉的调子来发端,这固然表明曹操真有他的愁思,所以才说得真切;但另一方面也正因为通过这样的调子更能打开处于下层、多历艰难、又急于寻找出路的人士的心扉。所以说用意和遣词既是真切的,也是巧妙的。在这八句诗中,主要的情感特征就是一个“愁”字,“愁”到需要用酒来消解(“杜康”相传是最早造酒的人,这里就用他的名字来作酒的代称)。“愁”这种感情本身是无法评价的,能够评价的只是这种情感的客观内容,也就是为什么而“愁”。由于自私、颓废、甚至反动的缘故而愁,那么这愁就是一种消极的感情;反之,为着某种有进步意义的目的而愁,那就成为一种积极的情感。放到具体的历史背景中看,曹操在这里所表达的愁绪就是属于后者,应该得到恰当的历史评价。清人陈沆在《诗比兴笺》中说:“此诗即汉高《大风歌》思猛士之旨也。‘人生几何’发端,盖传所谓古之王者知寿命之不长,故并建圣哲,以贻后嗣。”这可以说基本上懂得了曹操发愁的含意;不过所谓“并建圣哲,以贻后嗣”还未免说得迂远。曹操当时考虑的是要在他自己这一生中结束战乱,统一全中国。与汉高祖唱《大风歌》是既有相通之处,也有不同之处的。
青青子衿,悠悠我心。但为君故,沈吟至今。呦呦鹿鸣,食野之苹。我有嘉宾,鼓瑟吹笙。 这八句情味更加缠绵深长了。“青青”二句原来是《诗经·郑风·子衿》中的话,原诗是写一个姑娘在思念她的爱人,其中第一章的四句是:“青青子衿,悠悠我心。纵我不往,子宁不嗣音?”(你那青青的衣领啊,深深萦回在我的心灵。虽然我不能去找你,你为什么不主动给我音信?)曹操在这里引用这首诗,而且还说自己一直低低地吟诵它,这实在是太巧妙了。他说“青青子衿,悠悠我心”,固然是直接比喻了对“贤才”的思念;但更重要的是他所省掉的两句话:“纵我不往,子宁不嗣音?”曹操由于事实上不可能一个一个地去找那些“贤才”,所以他便用这种含蓄的方法来提醒他们:“就算我没有去找你们,你们为什么不主动来投奔我呢?”由这一层含而不露的意思可以看出,他那“求才”的用心实在是太周到了,的确具有感人的力量。而这感人力量正体现了文艺创作的政治性与艺术性的结合。他这种深细婉转的用心,在《求贤令》之类的文件中当然无法尽情表达;而《短歌行》作为一首诗,就能抒发政治文件所不能抒发的感情,起到政治文件所不能起的作用。紧接着他又引用《诗经·小雅·鹿鸣》中的四句,描写宾主欢宴的情景,意思是说只要你们到我这里来,我是一定会待以“嘉宾”之礼的,我们是能够欢快融洽地相处并合作的。这八句仍然没有明确地说出“求才”二字,因为曹操所写的是诗,所以用了典故来作比喻,这就是“婉而多讽”的表现方法。同时,“但为君故”这个“君”字,在曹操的诗中也具有典型意义。本来在《诗经》中,这“君”只是指一个具体的人;而在这里则具有了广泛的意义:在当时凡是读到曹操此诗的“贤士”,都可以自认为他就是曹操为之沈吟《子衿》一诗的思念对象。正因为这样,此诗流传开去,才会起到巨大的社会作用。
明明如月,何时可掇?忧从中来,不可断绝。越陌度阡,枉用相存。契阔谈,心念旧恩。 这八句是对以上十六句的强调和照应。以上十六句主要讲了两个意思,即为求贤而愁,又表示要待贤以礼。倘若借用音乐来作比,这可以说是全诗中的两个“主题旋律”,而“明明如月”八句就是这两个“主题旋律”的复现和变奏。前四句又在讲忧愁,是照应第一个八句;后四句讲“贤才”到来,是照应第二个八句。表面看来,意思上是与前十六句重复的,但实际上由于“主题旋律”的复现和变奏,因此使全诗更有抑扬低昂、反复咏叹之致,加强了抒情的浓度。再从表达诗的文学主题来看,这八句也不是简单重复,而是含有深意的。那就是说“贤才”已经来了不少,我们也合作得很融洽;然而我并不满足,我仍在为求贤而发愁,希望有更多的“贤才”到来。天上的明月常在运行,不会停止(“掇”通“辍”,“晋乐所奏”的《短歌行》正作“辍”,即停止的意思);同样,我的求贤之思也是不会断绝的。说这种话又是用心周到的表现,因为曹操不断在延揽人才,那么后来者会不会顾虑“人满为患”呢?所以曹操在这里进一步表示,他的求贤之心就象明月常行那样不会终止,人们也就不必要有什么顾虑,早来晚来都一样会受到优待。关于这一点作者在下文还要有更加明确的表示,这里不过是承上启下,起到过渡与衬垫的作用。
月明星稀,乌鹊南飞,绕树三匝,何枝可依?山不厌高,海不厌深,周公吐哺,天下归心。 “月明”四句既是准确而形象的写景笔墨,同时也有比喻的深意。清人沈德潜在《古诗源》中说:“月明星稀四句,喻客子无所依托。”这说明他看出了这四句是比喻,但光说“客子”未免空泛;实际上这是指那些犹豫不定的人才,他们在三国鼎立的局面下一时无所适从。所以曹操以乌鹊绕树、“何枝可依”的情景来启发他们,不要三心二意,要善于择枝而栖,赶紧到自己这一边来。这四句诗生动刻画了那些犹豫徬徨者的处境与心情,然而作者不仅丝毫未加指责,反而在浓郁的诗意中透露着对这一些人的关心和同情。这恰恰说明曹操很会做思想工作,完全是以通情达理的姿态来吸引和争取人才。而象这样一种情味,也是充分发挥了诗歌所特有的感染作用。最后四句画龙点睛,明明白白地披肝沥胆,希望人才都来归我,确切地点明了本诗的主题。“周公吐哺”的典故出于《韩诗外传》,据说周公自言:“吾文王之子,武王之弟,成王之叔父也;又相天下,吾于天下亦不轻矣。然一沐三握发,一饭三吐哺,犹恐失天下之士。”周公为了接待天下之士,有时洗一次头,吃一顿饭,都曾中断数次,这种传说当然是太夸张了。不过这个典故用在这里却是突出地表现了作者求贤若渴的心情。“山不厌高,海不厌深”二句也是通过比喻极有说服力地表现了人才越多越好,决不会有“人满之患”。所以陈沆说:“鸟则择木,木岂能择鸟?天下三分,士不北走,则南驰耳。分奔蜀吴,栖皇未定,若非吐哺折节,何以来之?山不厌土,故能成其高;海不厌水,故能成其深;王者不厌士,故天下归心。”(亦见《诗比兴笺》)这些话是很有助于说明本诗的背景、主题以及最后各句之意的。
总起来说,《短歌行》正象曹操的其它诗作如《蒿里行》、《对酒》、《苦寒行》等一样,是政治性很强的诗作,主要是为曹操当时所实行的政治路线和政策策略服务的;然而它那政治内容和意义却完全熔铸在浓郁的抒情意境之中,全诗充分发挥了诗歌创作的特长,准确而巧妙地运用了比兴手法,来达到寓理于情,以情感人的目的。在曹操的时代,他就已经能够按照抒情诗的特殊规律来取得预期的社会效果,这一创作经验显然是值得借鉴的。同时因为曹操在当时强调“唯才是举”有一定的进步意义,所以他对“求贤”这一主题所作的高度艺术化的表现,也应得到历史的肯定。
第二代互聯網 中國技勝全球
第二代互聯網 中國技勝全球
【明報專訊】中國工程院前天(23日)授權公布,由中國研製的下一代互聯網主幹網核心技術通過國家驗收,這技術較第一代互聯網更大、更快、更及時、更安全和更方便,且令中國在二代互聯網徹底擺脫一代互聯網由「美國話事」的局面,並確定中國在下一代互聯網中領先地位。目前國際互聯網組織已決定以此為基礎,制定相應的國際標準。
新華社報道,「下一代互聯網主幹網」是中國在2003年啟動的國家重大科技攻關項目,由清華大學等25間高校共同承擔,2004年建成,在北京、上海、廣州進行聯網試行,目前已與全國20個城市167所高校科研機構互連,傳輸速度每秒2.5G到10G,是目前各國使用的第一代互聯網速的百多倍。
核心技術4突破
「下一代互聯網主幹網」在核心技術上有4項突破﹕開創性創建了世界上第一個純IPV6主幹網,加速世界互聯網發展步伐﹔在國際上首次提出真實原地址認證結構理論,為解決互聯網安全隱患提供重要保證﹔首次提出兩代互聯網過渡技術方案﹔具有自有知識產權的IPV6路由器(router)的大規模使用,將使中國今後在互聯網建設中徹底擺脫對國外設備的依賴。
IPV6全稱是「互聯網協議第6版」,目前第一代互聯網使用的IPV4是32位編碼,核心技術屬於美國,分配給中國的IP地址不到5000萬個。中國下一代互聯網採用IPV6是128位編碼,資源可無限擴充。
更快更安全方便
中國教育和科研計算機網專家委員會主任、清華大學教授吳建平表示,現在互聯網連接範圍有限,主要是電腦主機,而未來互聯網可連接所有人類社會可以連接的電器,較第一代互聯網更大、更快、更及時、更安全和更方便。
中國工程院院士鄔賀銓說,國外下一代互聯網的實驗網目前較多還停留在學術試驗方面,中國在這個網上採用的一些新技術,如真實IP地址、IPV4 over IPV6,以及基於下一代網的建設架構,很多都是國外現有實驗網所無,「我們還是處於領先的位置」。
據稱,目前國際互聯網組織已決定以此為基礎,成立兩個專門工作組,制定相應國際標準。
【明報專訊】中國工程院前天(23日)授權公布,由中國研製的下一代互聯網主幹網核心技術通過國家驗收,這技術較第一代互聯網更大、更快、更及時、更安全和更方便,且令中國在二代互聯網徹底擺脫一代互聯網由「美國話事」的局面,並確定中國在下一代互聯網中領先地位。目前國際互聯網組織已決定以此為基礎,制定相應的國際標準。
新華社報道,「下一代互聯網主幹網」是中國在2003年啟動的國家重大科技攻關項目,由清華大學等25間高校共同承擔,2004年建成,在北京、上海、廣州進行聯網試行,目前已與全國20個城市167所高校科研機構互連,傳輸速度每秒2.5G到10G,是目前各國使用的第一代互聯網速的百多倍。
核心技術4突破
「下一代互聯網主幹網」在核心技術上有4項突破﹕開創性創建了世界上第一個純IPV6主幹網,加速世界互聯網發展步伐﹔在國際上首次提出真實原地址認證結構理論,為解決互聯網安全隱患提供重要保證﹔首次提出兩代互聯網過渡技術方案﹔具有自有知識產權的IPV6路由器(router)的大規模使用,將使中國今後在互聯網建設中徹底擺脫對國外設備的依賴。
IPV6全稱是「互聯網協議第6版」,目前第一代互聯網使用的IPV4是32位編碼,核心技術屬於美國,分配給中國的IP地址不到5000萬個。中國下一代互聯網採用IPV6是128位編碼,資源可無限擴充。
更快更安全方便
中國教育和科研計算機網專家委員會主任、清華大學教授吳建平表示,現在互聯網連接範圍有限,主要是電腦主機,而未來互聯網可連接所有人類社會可以連接的電器,較第一代互聯網更大、更快、更及時、更安全和更方便。
中國工程院院士鄔賀銓說,國外下一代互聯網的實驗網目前較多還停留在學術試驗方面,中國在這個網上採用的一些新技術,如真實IP地址、IPV4 over IPV6,以及基於下一代網的建設架構,很多都是國外現有實驗網所無,「我們還是處於領先的位置」。
據稱,目前國際互聯網組織已決定以此為基礎,成立兩個專門工作組,制定相應國際標準。
Sunday, September 24, 2006
Saturday, September 23, 2006
毕业生申请保留户口、档案两年的政策精神
国务院办公厅转发国家教育部等四部委《关于进一步深化普通高等学校毕业生就业 制度改革有关问题的意见》,简称国务院19号文件的相关精神规定,在毕业离校前仍未 落实就业单位的应届毕业生可以延长择业期(不包括打算考研和自费出国留学的毕业生) ,从当年7月1日起,延长期限为两年。两年内与用人单位签订就业协议书、接受手续齐 备的毕业生,学校为其办理相关就业手续。其具体做法是: 1.当年毕业离校前仍未落实就业单位的京外生源应届毕业生须向学校申请,将其户 口和档案转至入学前户籍所在地,或保留在学校。北京生源毕业生毕业时应将户口转回 入学前户籍所在地,其档案由学校统一转至北京高校毕业生就业指导中心保管; 2. 户口和档案保存在学校的京外生源毕业生,应当与学校学生就业指导服务中心 签订协议,其户口和档案在学校保存的最长期限为两年。 3. 毕业生档案在校保存期间,两年内可免交档案保管费用,但毕业生应当接受学 校指定的档案管理机构。协议到期后,毕业生应当自行将户口和档案关系迁出。逾期不 办理或不与学校联系的,学校将其户口和档案迁至入学前户籍所在地。 4.根据北京市的有关规定,京外生源毕业生留京时间截止到当年的12月底;对于超 过上述期限在北京市落实工作单位的京外生源毕业生,由录取单位按照《北京市引进人 才和办理〈北京市工作寄住证〉的暂行办法》办理人才引进或北京市工作居住证,学校 不再为其办理派遣手续。 根据有关规定,对于到全校统一派遣时仍未落实单位的京外生源毕业生,其本人需 要向学校提出申请,将其户口、档案等关系转入入学前户籍所在地,或保留在学校两年 继续落实就业单位(打算出国、考研的毕业生不能申请将其户口、档案等关系保留在学校 )。毕业生在委托学校保管其户口档案期间,可以参加学校举办的各种招聘活动,但与学 校已经无隶属关系。
入户广州的最新政策
入户办理指南 一、 异地人才引进; 申办条件: 1、本科学历,有学士学位,年龄在35周岁以下; 2、大专学历,有中级以上职称,年龄在35周岁以下。 申办所需材料: l 档案所在单位详细地址; l 同意调出函、现实表现、计生证明(原档案单位出具); l 企业营业执照副本复印件、劳动合同原件及复印件、人才引进表<单位盖公章>( 聘用单位出具); l 学历证、学位证或职称证原件(学历证、学位证需办理鉴定); l 原户口本复印件(户主与本人两页)。 l 《人事代理手册》(小一寸近照)、《广州市引进人才呈报表》; 所需费用: 入户免费,需按500元/年的标准一次性收取三年的档案挂靠费1500元,及200元的人才引 进费,总额为1700元; 二、 应界大学生接收; 申办条件:大学本科,属国家统分生或委培生(须有学位证书)。 申办所需材料: l 单位组织机构代码证复印件。(单位提供) l 营业执照副本复印件。(单位提供) l 《大学生就业协议书》原件一式三份(加盖接收单位公章)。 l 《毕业生就业推荐表》原件一份。 l 身份证复印件一份。 l 已填写好并加盖接收单位公章的《人事代理手册》(手册我部提供)。 所需费用: 入户免费,按500元/年的标准一次性收取三年的档案挂靠费1500元 其它费用(均适合于上述两种): 办理身份证费用:20元身份证办证工本费用、1元户口本工本费用; 如落南方人才集体户(地址:广州市黄埔大道668号中国南方人才市场广州市场)按20元 /月的标准一次性收取一年的户籍管理费240元/人。
出国留学或工作中国不再注销户口
中国公安 部8月7日公布户籍、交通、出入境及消防管理4方面30项便民措施,其中户籍管理推出7 项新措施,包括到西部工作的大学毕业生可选择将户口迁到工作地或保留原籍;大城市 高中级专才到小城镇或农村工作,可不迁户口;取消出国或出境工作及留学1年以上者注 销户口的规定等。其中最令外界关注的是,取消囚犯和劳教人员「注销城市户口」一项 。 开发西部者准不迁户 明报报道,公安部治安局副局长鲍遂献昨日说,中国实行常住地登记户口原则,公 民常住地如有变更,按规定应将户口迁移到现住地,但为了吸引更多大学生参与西部开 发,公安部调整有关原则,以除他们的後顾之忧。同时,到西部投资开发的各类人才也 可不迁户口,已迁者亦可迁回原地。 此外,由於很多城市考生不愿大学毕业後迁离城市,新例也规定入学时可自愿选择 是否办理户口迁移手续。 新例又规定,自即日起取消出国或出境1年以上者须注销户口的规定,以进一步方便 公民出国或出境。旧规定於1994年制定,规定公派或自费出国留学者在出国1年以上即要 注销户口。新规定取消以上限制,但出境定居者的户口则仍须注销,这些人再回国定居 或回国工作,须在30日内办理常住户口登记。 父母自选新生婴落户 另外,即日起新生婴儿户口可随父母自愿选择。官员说,此项政策自1998年推出後 ,并未得到切实执行,一些大城市设置了限制条件,民众对此极为不满意,如今重新公 布规定,有利於切实保护公民合法权益。官员强调,不管是否属於超额生育或非婚生育 的婴儿,新生婴儿落户皆随父母自愿选择,公安部门应该及时给予办理户口登记。 囚犯可保留原有户籍 新例最令人关注的是,取消了对被判徒刑、被决定劳动教养人员注销户口的规定。 过去数十年,公安部门为维护治安,分别於1958年、1981 年、1983 年和1994 年数度出 台、强化注销罪犯和劳教人员城市户口的办法,明确规定「期满後留场就业,不得回原 大中城市」,而这些规定一直受到海外质疑。公安部负责人昨天表示,保留囚犯和劳教 人员户口的新例旨在保护他们的合法权益,尊重和保护人权。
湖南省公安厅:全省至少有60万人身份证同号
http://news.tom.com 2006年09月22日 07时27分 来源:潇湘晨报 湖南省公安厅:全省至少有60万人身份证同号 核心提示 据省公安厅信息通信处最新统计数字,身份证号码完全相同、姓名不同的信息共计30万 余条。按照一条信息至少对应两人计算,全省至少有60万余人将受到同号的影响。 三个证明才能证明身份 今年54岁的胡卫平住在长沙市岳麓区窑坡山社区,具有20年驾龄。他现在开车时必须随 身携带三个证明身份的证件:老版第一代身份证(已过期),第二代身份证,以及当地 派出所出示的相关证明。 胡卫平第一代身份证是1986年办理的,到今年1月1日已过期。去年11月10日,胡办理了 第二代身份证号码。但在办理时他的身份证与别人同号,办证人员通知其更改身份证号 码。胡当时并没在意,此后他却频频遭遇同号的无尽困扰。驾驶证、房产证、护照、保 险等,许多与原身份证号相关的东西都将进行重新登记或更改,否则将无法认证。 麻烦还不止这些。办理完新版身份证不到1个月,他在一次开车的途中,便遭遇“伪证” 的尴尬。交警在例行检查中,发现胡出示的身份证号码与驾驶证号码不一致,怀疑其中 有一张是假证,于是扣押了车辆和证件。按通常情况,驾驶证与身份证必须是同一号码 ,这也符合国际通用惯例。 满腹委屈的胡拿着两张身份证到长沙市交警支队车管所,通过联网数据查证,他的驾驶 证、身份证均为合法证件,交警部门应该放车。车子虽然放出来了,但为了避免此类事 件继续发生,民警通知他应该在户籍所在地的派出所办个证明手续。 今年3月3日,长沙市公安局岳麓分局望月湖派出所为其出具了一纸证明:“4301035 807和430102195807系同一人。”此后胡出车时,须随身携带新老两 个身份证和一纸书面证明,避免出现同样的尴尬。 一个号码7个人使用 根据胡的陈述,他办理第二代身份证时工作人员告知,有7个人使用了与他一模一样的身 份证号码。 怎么会有如此多的同号?据省公安厅交警总队相关文件透露,省厅信息通讯处对综合信 息查询系统中的驾驶人信息与常住人口信息进行批量比对,发现身份证号码完全相同、 姓名不同的信息共计304454条。工作人员称,按照一条信息至少影响2个人计算,我省估 计有60多万人受到同号的影响。而随着第二代身份证的改新换代,这个问题将大量出现 。 省公安厅人口管理总队户政支队支队长刘昌顺告诉记者,身份证同号一般是2人一对,目 前还没有发现多人同号者,但理论上也有多人同号的可能。产生同号的根源将要追溯到 二十多年前,当时的人口户政工作是手工登记,许多工作人员为省麻烦,把同一乡镇的 同年月日的居民全编成了一个身份证号码,为现在的身份证同号埋下了隐患。 胡卫平有驾驶证,按照工作程序,只需把驾驶证号码进行更改就可以解决问题,但在12 个工作日内不能取得驾驶证,而且还须交纳换证的相关费用。胡说,不仅是要更换驾驶 证,还有护照、房产证、养老保险等与原来身份证号码有关的证件都必须进行更改,否 则就有可能带来麻烦。胡认为,这个问题是由国家相关部门的工作不到位引起的,带来 的损失也应由国家承担。 身份证同号连累驾驶证 胡卫平随身要带三证才能证明自己身份,但有人却为办不到证感到烦恼。朱先生是望城 县人,去年他已换了第二代身份证。3个月前,他买了辆新车准备办理驾驶证的时候,同 号让他卡了壳。 长沙市交警支队车管所工作人员告诉朱,由于我省已启用全国统一版机动车驾驶证管理 系统,他的身份证号码已有人“占用”并办理了驾驶证,而驾驶证号码必须与身份证号 码相同,所以目前无法给他办理,必须等身份证同号的对方将已有驾驶证注销掉,朱才 能够顺利办到驾驶证。 朱先生从交警支队获知,与他身份证同号的,是与他同一乡镇一名姓张的人。为了此事 ,朱多次与张联系,但对方就是不肯配合。“我已将交警下达的告知书当面交给了对方 ,但他就是不愿意去注销驾驶证,这让我无可奈何。”朱先生说。目前,无法办到驾驶 证的朱只好请人开车。 强制执行没有法律依据 同号的出现引起省公安厅领导的高度重视。省厅要求各地交警支队对辖区范围内的机动 车驾驶人身份证重错号人员进行告知,要求其到交警支队驾管所办理身份证号更改业务 。 而多位市民向本报反映,许多同号的人并不愿更改自己的身份证号码,主要是担心会给 自己带来更多麻烦。即便是交警支队下达了告知书,他们也不愿意前来办理驾驶证变更 号码的手续。朱先生认为,相关部门应出台强硬措施,迫使其他同号者来更改驾驶证号 码,否则他将长期无法办驾驶证,其损失可想而知。 长沙市交警支队车管所工作人员告诉记者,通过强制措施要求重号人员更改信息是没有 法律依据的,毕竟重号驾驶人员并没有违法。支队目前的任务是向重号驾驶人员下达告 知书,如果一段时期内仍存有大量重号驾驶员没有前来更改信息,他们将报请省厅交警 总队,采取适当措施来执行。 记者从省公安厅人口管理总队了解到,同号现象也不是唯独在我省存在,各地在启用全 国统一版机动车驾驶管理系统后,均出现不同程度的因身份证重号而造成驾驶人网上无 信息、新的驾驶证申请人无法办理机动车驾驶申请业务等问题。 记者了解到,由于这60万余同号人员只是全省人口总体中的少数,省公安厅人口管理总 队提醒市民,随着今后信息化程度越来越高,同号的公民应及早前往相关部门更改号码 ,以避免给自己带来更多的损失。 小知识 身份证号码的由来 据省公安厅人口管理总队工作人员介绍,身份证是证明公民身份的首要合法证件,其号 码是根据公民户籍所在地代码、出生年月日以及随机码组成。 我国第一代居民身份证是1986年开始集中办理的,当时主要由乡镇一级政府组织登记办 理,直到上世纪90年代初才开始由公安机关代为管理。第一代身份证号码由15位数组成 ,其中前6位数为省、市(地)、县(区)的代码,如胡卫平老版身份证中的“430103” 代表湖南省长沙市天心区。而随后的“5807”代表此公民的出生年月日是1952年8月 7日,而最后的“”是3个随机码。按照当时填写身份证号码的要求,在三个随机 号码中,有两位一般是乡镇的代码,而最后一位数字则代表公民的性别,男性为单数, 女性为偶数。 在同一个省市县,又是同年月日出生,其身份证号码的非“随机码”是固定的,而最后 的几位随机数字,则应视情况而定,应避免同号的产生。 “由于技术原因,当时编制身份证号码是通过手工进行的,而许多进行登记的工作人员 并没有完全按照规定去办,难免出现身份证同号的问题。”省公安厅人口管理总队一工 作人员说。 上世纪末,为避免“千年虫”的危害,身份证号码增加到18位数,采用了4位数取代原来 2位数的方式来说明出生年份,随机码也由原来的3位变成了4位,并在特殊情况下引用英 文字母进行区别。省公安厅人口管理总队户政支队支队长刘昌顺说,近几年,相关管理 部门把人口信息输入电脑数据库,进行联网管理,这更方便识别居民的个人身份。 胡卫平在变更身份证号码时,因其户籍所在地点发生了变化,身份证号码的第6个数字也 随之发生了变更。 原则 身份证同号如何纠错 今年7月,我省出台新的《常住户口登记管理暂行规定》。按照《规定》,公民身份号码 重号先由派出所协调双方,其中有一方愿放弃原号码的,公安机关将为其重新赋予新号 码。协调不成按以下原则纠正:在湖南省公安厅制证库中有记录优先保留原则。通过核 查制证库,凡是在制证库里有制证记录的人,其号码优先保留,无制证记录的人重新赋 号。迁移人员优先保留原则。考虑到迁移人员回原籍较难,在两人重号的情况下,未迁 移人员重新赋号,已迁移人员保留原号。两人都属迁移人员的,迁移距离较远的优先保 留其号码,迁移距离近的重新赋号。另一种原则是,谁的身份证签发日期是最近的,就 优先保留原号码。 省公安厅人口管理总队户政支队支队长刘昌顺解释,身份证签发日期最近的人,他的身 份信息也是最准确的。而签发日期较早的人的身份信息可能还有要更改的地方,重新赋 号的时候可以核对和更改自己可能有差错的信息。潇湘晨报记者 刘俊
Job-GE
感觉这两天RP值极低,仔细反省才想起来原来是一直许愿写写自己在GE的实习经历,到现在也没有实现。所以决定今天静下来,把自己这4个多月来,从做校园大使到实习这个过程中的感受和见闻写写,供大家参考,同时也为自己攒些RP,呵呵。 首先说说2006年4月22日在香格里拉饭店的Job Fair吧。那天有很多部门面试,当时的情况是说几天前已经有了电话面试,这个相当于二面了,来面试的人原则上都是初筛过关的。当然,之前的宣讲会上,负责校园招聘的HR也说过,当场还会接受同学们递交简历。实际上,当天除了提前通知过来面试的同学外,当场还是给了一些面试机会的。尤其是CTC中国研发中心,还有IMLP的项目都给了很多机会,基本上简历满足要求就会安排面试。 我当时是负责HealthCare面试秩序的,看到了许多同学递交简历。这里就说说我个人的感受吧,主要以技巧为主。 第一,是要专业对口 GE是一家以基础设施和工业产品为主的公司,EID的这个实习项目很大部分的位置都是要求专业背景的。这些要求在职位描述中都有提到。我当时帮HR收简历,好多同学就是把简历一投,连明确的方向都没有,这样的话被选中的概率很小。比如,HC主要是在医学成像方面要求比较多,HR在初步筛选简历的时候看的专业就是核物理或者由相关的图像分析经验,没有这些,基本上在当天的面试中是没有机会的。 第二,关于Marketing 现在大家都对Marketing感兴趣,但是GE的市场部门和大家理解的有所不同。基本上分为两种职能,一种叫Market Communication一般针对文科,尤其是新闻专业,主要是负责对外宣传,在新闻媒介上刊登消息。第二种是大家理解的Marketing部门,做战略或者宏观的东西,GE对于这部分人的要求很高的,目前一般需要5年左右的销售经验才能做市场。所以大家在投简历的时候需要认真阅读职位描述,Marketing也会招一部分实习生,不过对于专业也是要求比较多的,根据业务部门划分的比较细致(主要是因为GE是以技术为主的企业)。 第三,简历 因为帮助HR收简历,所以也收获一些经验。主要是教育背景、实习经历、社会工作应该平均分布一些。对于申请不同的职位,一定要有所侧重。尤其是很多工科同学的项目经验比较丰富,对于不同的职位,一定要从自己做过的项目中找到比较相关的部分。 另外,个人建议把中文简历放在英文上面。一般筛选简历的HR都是中国人,我想就算英语再好,也还是会偏向先阅读中文的材料的。不过英文简历也十分重要,如果没有或者写的不好的话,可能会没有面试机会 第四,其他 对于这种Job Fair,所谓霸王面的机会还是不少的。为了把握住这些机会,我建议大家首先了解下招聘的职位,多多准备简历(全国各大酒店复印打印都是10元一张,呵呵),简历一定好订好,准备一根笔,手机一直开着。对于GE这样的公司,着装上,男生单色衬衫+皮鞋+正装裤子就可以了。 还要说一句的就是,那天咱们学校的同学非常多,一度大家准备的声音比较大,而且拥挤,大家还是需要注意以下学校的形象,而且HR有时坐在门口收简历,给人的印象也不是很好。 总之,像GE这种基础设施制造和销售为主的公司,在投简历的过程中,我的感觉有这些经验。下面讲讲我的实习经历。 先从面试开始说起吧,面试的时候主要还是那些常规问题,自我介绍、个人经历等等。因为是我的第一个面试,所以非常紧张,加上对于这个职位又不是很清楚,所以发挥的不太好。不过,因为这个职位是销售助理,主要就是一些行政性的工作,所以,最后还是过了。 说起我这将近4个月的实习,感触还是很多的。从一开始为销售团队订酒店机票,到后来能够参与到部门大型的商业活动中,了解整个部门的运作,收获很多。 先说说我工作的部门,我在的部门是基础设施下面的油气集团(Infra Oil&Gas 和energy是平行的部门,其实,以前Oil&GAS是Energy下面的部门,去年年底部门调整后才独立出来。不过这个部门的HR和财务都是和Energy一起的,所以招聘的时候也在一起)。我的具体工作因销售团队当时的安排而定,联系过客户、做过文字翻译、为部门内部整理文件资料、申请财务流程等等。实习的时候我是大四,所以时间比较多,一周几乎是5天工作。其他部门的intern很多都是咱们学校研二的师姐,呵呵,就我一个男生,感觉比较......大家做的工作也根据Team的安排各有不同,不过基本上都是十分具体细致的工作(实习生的本质呀)。 这段实习经历总的来说让我体会到了在一家外企工作的感受,下面把收获总结总结。 首先是沟通,因为助理这个工作每天需要联系非常多的事情,和人沟通的技巧还是很重要的。因为企业文化的缘故,GE里的人都很Open,一般有问题都是会非常热心帮助的。工作一段后,感觉认识了很多人。虽然有的时候大家都很忙,但经常交流感觉很亲切。 培训是GE的特色,每天总能看见同事在电脑上上着自己老板或者HR为大家安排的课程,而且,经常会有全球负责培训的同事来办公室进行培训,也有很多机会外出培训。总之,大家都是不停的在学习。我参加了两次内部的培训。一次是听上海来的HR进行Presatation Skills Training。从这个培训中,我清楚地看到了GE的做事风格,同时也了解了周围的同事。另外一个是专门为intern准备的orientation。能有这么个机会真的非常难得,从GE Value到员工的职业发展,通过这次培训感觉对GE了解了很多。 诚信是GE的生命,我个人认为。因为我服务的是一个销售团队,可以看到这里做sales的不同。在GE,严格强调诚信原则,就是compliance and integrity。比如sales请人吃饭,各个部门的规定有所不同,因为我们这个部门涉及到一些大型国企和政府,要求每人每餐正常标准是200元人民币以下,而且,每顿饭必须要提前审批。Sales不能和客户唱卡拉OK,送礼品也有金额限制,超过200元或者总数过高就会有VP级的人物过问。不过,GE的产品还是买的很好,主要是因为技术比较强,在基础设施很多领域上没人能比,呵呵,工科的同学如果对研发有兴趣可以关注下GE的中国研发中心。 对于人员的发展,从对实习生的培训到我们最后结束时的report out,还有许多leadership program,感觉GE在员工发展上下了很大的功夫,很多的培训+内部的岗位轮换,机会还是非常多的。总的来说就是GE非常认同符合自己企业文化的员工。 还有就是对于人的心态上的锻炼,在学校的时候感觉工作以后做的事情是非常有挑战的,然而在实际工作中,总有许多小细节需要注意完成好,尤其是做销售的人,始终要保持好自己的状态,保持和客户的联系,了解客户的需求。这就需要不断的学习和激励,同时也需要毅力和积极的态度。感觉工作和做学生的变化还是很大的(突然特珍惜学生生活了)。 总之,在GE的实习感觉收获还是很多的,零七八碎写了一些,希望对大家有些作用。(对了,精华区里那个对于GE的介绍太老了,现在GE的中国总部在上海,北京是Energy Oil&Gas HealthCare Water的总部,其他的部门总部好像大多也在上海。现在GE China和日本的关系没有那么紧了,再过2、3年中国就是亚洲的发展核心部分了) 如果对GE感兴趣的话可以直接问我,站内消息就可以。另外,还要两位校园大使,chenxiyi和inano。呵呵,声明一下,我们三个发的intern消息都是由GE Corporate发给我们的,也有些消息是在GE实习或是工作的人发的,可能有时是部门需要比较急,而且需要清华的学生,所以直接post出来了,呵呵。 另外,做个提前预报,GE今年不会进行大规模的校园招聘了(因为会从Intern转,先考虑intern),不过在10月份会有一个小的seminar,应该会release出些招聘消息,感兴趣的话可以关注一下。 嗯,就这样吧,希望攒些RP。呵呵^_^
英语中的恋爱词汇
1. have a crush on 迷恋某人 A: I'm having this huge crush on Ted. I'm going to try and see if I can ask hi m out this weekend. A: 我最近好喜欢 Ted 喔! 我想看看能不能约他这个周末出来。 B: Well...But I heard that he is already seeing somebody. B: 嗯....但是我听说他已经有了交往的对象了ㄝ! 美国人关于交友的用词和我们有些不同。这里的 "he is seeing somebody" 有可能指他刚 正开始和某人交往, 也可能指他和对方已经交往了一阵子。 还有一个美国人常用来形容他们的「感情状况」的字是"relationship"。到目前为止, 我 还不能找到一个很贴切的中文来代替它。不过, 如果例句中的"...But I heard that he is already seeing somebody." 改成 "...But I heard that he is already is a seri ous relationship with somebody." 就惨了。因为那表示这个叫Ted 的男生不但是「死会 」了, 而且是「非常地死会」。 各位应该可以大致抓到它的意思吧。 2. play hard-to-get 欲擒故纵 A: So she stood you up last night. A: 结果, 她昨晚放你鸽子啦? B: Well, I guess she's trying to play hard-to-get. B: 嗯, 大概想跟我玩「欲擒故纵」的游戏吧! "stand someone up" 是「放某人鸽子」的意思。 "play hard-to-get" 也可以说成 "play tough-to-get"。 3. hook up 介绍、送作堆 A: Hey, how come you've never told me you have a cute sister... A: 嘿! 你为什么从来没告诉我你有一个这么漂亮可爱的妹妹? B: What are you trying to say? B: 你想说什么呢? A: Well, you can hook me up, maybe? A: 嗯..也许你可帮我介绍一下? B: No way. B: 休想! "How come?" 是口语上经常被用来代替"why"的字, 是「为什么」的意思。但是"how come " 跟"why"的用法是不同的。 用"how come"时, 句子的构造很接近中文: 如: "How come you didn't call me last night?" (你为什么昨晚没打电话给我呢?)。这句话如果换成用 "why"就须要用一般的问句型式, 而成 "Why didn't you call me last night?"了。 美国人对于亲属辈份关系的区分, 并不像我们那么清楚。这里的 "sister" 可能指「姊姊 」, 也可能指「妹妹」; 须要另外问才清楚。 "hook up" 是"connection"的意思, 相当于中文里的「介绍、认识」之类的词, 并不单指 男女之间的认识。比如某人正在找份工作, 他的朋友刚好认识比尔盖兹(Bill Gates)。他 就可以跟这位朋友说"Hey! Since you're a friend of Bill's, why don't you hook me up?" (嘿! 既然你是比尔的朋友, 帮我介绍一下吧!) 4. break up 分手 A: How are Bob and Pat doing? A: Bob 和 Pat 近来如何? B: They broke up last summer. B: 他们去年夏天分开了。 "break up" 是「关系中止」的意思, 不限于男女之间的关系。"break-up" 是分手的名词 形。如: "They had an ugly break-up." (他们很不愉快地分手了。) 5. date (男女间的)约会; 约会对象 A: Dude, did you see that babe over there? I'm dating her. A: 老兄!看见那边那个美女没有? 我正在跟她约会喔! B: Man, you're lucky. B: 你真是运气好! "babe" 是「令人垂涎」的美女或俊男。 「和某人约会」除了用 "date" , 还可以用 "romance"这个字。比如: "Beck and Ada ha ve been dating for years." 可以说成:"Beck and Ada have been romancing for year s.", 都是「Beck 跟 Ada 爱情长跑多年的意思」。 注意名词的" date" 和 "appointment" 不可混用?quot;appointment" 是男女以外的约会 , 如医生、工作面谈的约。万一你跟你的医生说:"I'd like to have a date with you." , 他可能会眼睛、嘴巴都张得很大。
在香港怎么买化妆品:SASA篇、卓悦篇
◆SASA篇 1、网购SASA 这是官方的话:在sasa.com定购货品运送到中国,除货物费用及每张单收取15美元的运费外(请注意,在sasa.com国际网站购物满350美元均可获免运费的送货服务。),您可能会被征关税。每个国家的税制浮动都很大,您可能需要负责这类附加费或税项,这视乎货品运送目的地的法例。 因为并非sasa.com收取这类附加费或税项,我们因此不能控制或预计这类收费的数目的多少,而且若被征收关税,只会通知收件人,而不会通知sasa.com的,所以我们亦没有相关资料,不便之处,恳请见谅。因每处地方的税务条例有很大分别,若想知道更详细的资料,我们建议您向您们的海关部门查询会比较正确和清楚。 mm如果一定要在sasa上网购的话,可以去办张信用卡,然后用美金支付,人民币还款,东西sasa可以帮你直接寄到内地的。不过他家的国际网站上东西都不算便宜的说,而且运费太贵啦~~~15刀哪,满250刀免运费。 要是你买的东西多,邮费就不算贵了,(他们是用速递形式的,一两天内就送到)。因为它是以订单计算,而不是重量计算的,一张订单15美金,要是多订就划算了。问题反而是关税,要是因为被抽查而要报税,莎莎是不管的。要是因此退货,莎莎不退钱之余,还会收手续费。这才是在国内上网买莎莎东西的最大问题。 我的一帮香港朋友也很少去 SASA,因为她们买化妆品是缺一件买一件, 折算下来一件也就便宜几十块, 以香港的消费水平来说也就一个商业午餐的价格.而且专柜购物环境好,服务态度比 SASA 好,产品的保障系数也高,还有赠品,如果固定用一个牌子,如会积分还有一大堆礼品...这样算下来去 SASA 的意义就不大了.倒是一些学生妹或低收入的会去那里买开架的护肤品或是彩妆.SASA 做最多生意海是国内游客, 大批量的买就感觉价格优势了。 在尖沙咀加连威老道是有一间龙城大药房,里面有不少化妆品,和莎莎一样,谁也不知道货源,所以答不上是不是一定是真的.不过,这店也开了很久了,有一定的捧场客.如果是喜欢去莎莎,卓越这些店买东西的,那龙城也可以考虑.它们是同一类型的店,只是规模沒有那么大而已。 在sasa或是卓悦都很便宜的,比专柜省,就是到专柜的价钱也大约是国内8折左右。但莎莎不是所有产品都比专柜或别的地方便宜的.一般的开架产品,如AVON,ZINO,露得清等等,就和WATSONS,MANNING等地方同价了,有些还比它们贵. 莎莎vip卡确是有九五折,不过,好象已经不再做新卡了,就是暂时不再发vip卡。 除了SASA还有卓悦,天使,都有很多门店。这些店比SASA的假货和过期货还要多,要小心点! 看到有关报道说SASA是EA的一级总代理,猜想应该可以拿到比较好的进价.所以SASA的Sales很卖力的推销EA,不知道大家有没有这种感觉,在不同的Outlet里面,她们都不约而同的卖力推销EA的东东.还有Chen Yu,我的另外一个同事也是被推销买了Chen Yu的一款清洁面膜,好像HK$318。 在这里提醒大家,在SASA买东西要拿定主意,小心Sales们另有居心的推销哦.不过,EA的东西在SASA挺全的,还有很多促销活动,我觉得要是有人喜欢用EA的话,在SASA买挺不错的,她们的东西全而且不会有假货,并且推销得那么勤快,应该货比较新。但网上的信息和店里的有点出入,CD的Diorsnow精华网上写了320多,可是在SASA店里要370,有些店了还没有.一瓶Anna Sui的香水在这家店是104,到另外一家却是114,不知道是不是看错了.大家去买的时候最好拿定主意,有备而去,查好价格,打好单子,对了,要是有SASA的贵宾卡别忘了带,可以打95折的.我是没在SASA网购过,据说是20%的概率要交税 ,好象有买过的说都没有交过税的SASA 大部分商品都是专柜(HK)的 6~7 折,但SK-II 一般只打 8.5 折,专柜打九折,价格相差不多,专柜有赠品送。 护肤品一般是没有小样的,不过你若用中国银行的国际长城卡结帐,可打95折。我每次在SASA买,都只有送香水小样。 我第一次买H20就是在专卖店,小姐也说同样的话,但是后来几次,我都在莎莎买,品质完全一样,想到第一次多花了100港币,我到现在还后悔,而且莎莎在香港是上市公司,如果真是大张旗鼓的做水货,早就完蛋了,所以我还是相信莎莎了.至于价格问题不难理解,想想你身边的百货公司和家乐福,一样的东西就是不一样的价格吧,当然莎莎也有不足之处,她不像专柜可以详细解答产品有关问题,而且常常货不全.就是这样。 更正一个概念,水货并不等于假货。所谓的水货,指的是没有通过指定的代理商销售,出了问题代理商不负责,但品质是一样的。嘻嘻,老实讲,本人也是SASA的长期客户,每年都跑到香港SASA买些化妆品。要知道,她的价格比专柜的便宜不少啊,肯定会动心。但去SASA买东西的时候,真的要事前学会看生产批号,不然很容易中招。 在sasa买东西给小票的,就象超市那种,年月日都有的。 sasa是连锁店,价格统一,商品在不同时期会根据外部原因调整,变化幅度有多大就很难说了;几乎所有的品牌sasa网上和店里的价格一样,只有极少数的品牌店里的价格会比网上便宜一点点。 sasa卖的未必是假货,如果是,早被人投诉死了,但人家现在已经是上市公司了,而且在东南亚开了那么多家分店。。专柜的为什么会贵,其实化妆品开设柜台,本来就要支付很大一笔的上柜费,这个钱商家自然是加到商品里面去。我有一次问专柜的一jj,为什么隔壁sasa的同样产品比你们便宜至少1/3,她解释说他们的货都是原装进口,sasa货是大陆或者台湾加工的,还说她们的产品要浓一些,颜色又怎么怎么。。其实我比较了一下,可能是我老眼昏花,我真的看不出来有什么区别。而且港澳还有几家店买的东东比sasa还便宜呢。但不一样门庭若市。 支付也是问题呢,得有VISA或MASTER卡吧。而且邮费好象挺贵的。如果在sasa受气,你可以打香港旅游局的投诉电话,很有效的,香港现在的经济就靠内地人消费去支撑,她有什么资格这样做?你投诉,会有人找她麻烦的,这个偶知道,香港的特区政府对这个很重视的。 SASA的东西,不知道大家有没有留意,都是专柜打7折或者8折的,那么正常的价格下,东西都是正常的。但是偶尔也有,明明CHANEL打8折,但是某个产品居然对折卖了,就应该看清楚再买。而且SASA的东西是有尾货,尾货大多卖的比平时要便宜。一般的东西都是好的,否则SASA也不会开到今天而且在香港寸土寸金的地方,开到那么多家,是个很大的上市公司。但是我在SASA,去过那么多次了,从来没有买过假货,也许是现在SASA变好了?至于以前,无法评论,至少现在是能肯定的。关于价格问题,因为SASA也是一个公司,也要赚钱。她开价一般是按照柜台价格打折计算,所以用美金计一定会比港币的要贵了。SASA的东西大多都是从代理手上来的(除了是自己总代理的东西),因为有时候货不卖完就可能拿不到第二年的代理权,所以那些公司就会直接用不亏的价格转给SASA保证自己下一年度的代理权。而且SASA有卖套装中的小样,包括应该赠送的套装也都卖了,这些都导致了SASA的价格比一般地方来的低。 我觉得买这种贵贵的最好去专柜,因为本来就很贵了专柜一般有活动的,在SASA我一般只买100左右一件的东西。 还有LANCOME之类的,因为便宜的厉害,而且批号容易看。其实算算专柜有活动,还经常买满能送,比SASA好:) 要是真的要到莎莎买东西,最好还是选一些比较大间的,在旺区的,例如旺角,尖沙咀,铜锣湾的会比较好,这类店因为买东西的人多,货的流量大,货品可能会比较新鲜.铜锣湾时代广场附近那间莎莎较大,货亦较齐,可以考虑。先说明一下,我只是说那间莎莎的店比较大,人流比较多,货品运转可能比较快,不代表那里买的都一定是没问题的产品。莎莎卖的毕竟是水货,货品不是从代理而来,总会有风险的,是否在莎莎购,看各人的喜好了。 我记得我曾经就批号的问题打电话问过el的专柜小姐,她说批号不代表生产日期,而且,.批号是经常转的.各地区都不一样的.每次返一批货回来后,就会按总公司发过来的的指示,输入计算机,所以,就算是她们自己,也要把盒上的BAR CODE过一次计算机,再看看瓶身上的资料,才知道是甚么时候进的货。要是从别的地方买回来的货,她们也不一定能查到批号.小姐告诉我,这一年所进的专柜货,已经改为4位的批号,别的地区,她就不知道了.要是她们说的属实,那批号也不代表甚幺了。而且,我们不是el公司的人,谁真正懂得批号的意思,举例说,批号 A51,谁知道EL公司是不是真有批号A51这些货?以上仅为资料提供,对于要看批号买东西的JM,请留意一下.好象有点危言耸听,不过,这确是我不在莎莎买东西的原因,因为到现在为止,一直都没能打听到这些水货店的进货的渠道,那么,还是小心为上。莎莎一般是购买她们自己代理的产品,才会送赠品的,小姐们的理由是她们卖的已经比专柜便宜,所以不可能再有赠品.莎莎代理的就不同,可以送些小样.所以,要是买la colline之类的产品,就千万别忘了问她们拿。 如果在SASA和卓越买会便宜一些,然后多问下有没有特价,有时候会捡到宝。上次我朋友帮我带回来一瓶雅顿的第五大道(30ML),猜下多少钱?80块港币!笑得我嘴都合不拢。那是刚好碰上卓越打特价。 2、几家sasa的比较: 1.香港铜锣湾罗素街38号金朝阳中心37楼 Sa Sa Beauty Plus 2.铜锣湾启超道14号地下 3. 铜锣湾骆克道500号地下 4. 铜锣湾罗素街38号 5. 沙田新城市广场第1期3楼348-349号舖 2、3都很大,沙田的那家也很大而全(而且我感觉沙田的那家东西比CAUSEWAYBAY的要新鲜?)。 沙田那家sasa门口好像就是bus站,挺方便的:) 4. 铜锣湾罗素街38号 这个是时代广场对面的那家,我去过;刚翻了香港地图 3. 铜锣湾骆克道500号地下 这个应该是在SOGO旁边的那家(她家边上好象是家“卓悦”)店堂小 ◆其他购物地点及指南 1、免税店 免税店的价格是和外面的专柜一样的.当然,比莎莎贵,因为莎莎是水货.免税店内没有COVERMARK、sk11、贝佳斯.一般的品牌,如BIOTHERM、CLINIQUE,LANCOME,EL,CD,ANNA SUI、chanel,clarins等都是有的。 海港城对面的免税店,品牌全,品质又有保证,只是比莎莎略贵一点。 我到hk就几天,根本没有时间逛多远,就在时代广场转了转,觉得地铁站是非常好的地方,里面有间JOYCE买的都是好东西,boots也是在地铁站的屈臣氏里面发先的,一下就买齐,花钱的感觉真好. 2、卓悦bonjour 我觉得卓越便宜多了:)在hk.好象卓悦每周都有特价的货品。它家的东西比SASA东西便宜,他主要卖的都是小一点的东西,有点象明星会,SASA卖的东西比较大牌一些。但还是比较可靠的。他们都会推荐一些自己店利润比较高的牌子!别听SALES的就好了,买自己需要的。 3、屈臣氏 一般而言,屈臣氏和百货公司的专柜没有多大分别. 香港机场内的护肤品,价钱基本和市区内的专店一样. 很多watson里面也有很多大牌的产品(金钟太古广场里面有很大一家,铜锣湾也有), 如CD, CM, SKII 等, 好象她们的价格比SASA贵一点, 但比专柜要便宜一点, 不知道是不是这样. 4、专店 要是在香港岛那边的,sogo是好选择,还有是皇室大厦的西武百货. 1)想买一些比较特别的产品,如nuxe之类的,可能就要去金钟的太古广场了. 2)我常去的是海港城和九龙塘那边的又一城。推荐又一城,布局比较合理,东西也比较全,而且坐车方便。海港城太大了,如果不熟悉的话走起来很累很乱。 3)买大牌去中环没错.时髦的,中等价位的去铜锣湾或者尖沙嘴,我个人偏好前者。 4)运动品牌可以去旺角,那里的酷男酷女看得我眼花缭乱。 5)如果要买便宜的,去女人街吧.10块钱就可以买到一件上衣,不过这样的衣服有必要千里迢迢跑到HK去买吗?而且,假货就属女人街泛滥. 6)购买金饰品可以去湾仔,很便宜的。
Friday, September 22, 2006
15年後3千萬人無老婆
15年後3千萬人無老婆[16:10]
新華社報道,按照中國公元兩千年人口普查的數據,到二零二零年,中國將有三千萬男人找不到老婆。
報道指出,自上世紀八零年代以來,中國出生人口男女性別比持續升高。據兩千年第五次中國人口普查結果顯示,中國出生人口男女性別比已達到一百一十七比一百,嚴重超出一百零三比一百零七的正常範圍。而二零零五年百分之一人口抽樣調查結果顯示,中國出生人口性別比又有所升高,達一百一十八點五八比一百。
中國人口和計劃生育委員會宣傳教育司司長張建近日在廣西開展全國「關愛女孩」行動萬里行活動,他表示,國家人口和計生委有意願爭取把抑制男女性別比例失調的「利益導向機制」納入全國性的政策範疇,可為解決中國出生人口性別比偏高的問題提供一個有效的治理途徑。
自二零零三年起,中國政府選擇性別失衡問題最為嚴重的二十四個縣試點「關愛女孩」行動,目的在通過廣泛深入地宣傳教育,逐步建立起有利於女孩及其家庭發展的利益導向機制。
三年來,這些地方政府採取一系列「利益導向」政策,幫助下一代全是女孩的家庭發展生產,為這樣的家庭提供養老、醫療等社會保障,保障女孩的受教育權等。
比如,下一代全是女孩的夫婦,在其六十歲以後,每人每年可獲得人民幣六百元的獎勵扶助金;獨生女家庭或者雙女孩家庭,可以優先獲得小額貸款;有的地區獨生女家庭或者雙女孩家庭的女孩在中考高考時還可以獲得一定程度的加分,甚至在就業時,同等條件下,女性優於男性錄用。
有關專家認為,「利益導向機制」可有效破解中國人的「養兒防老」的思想問題,但「傳宗接代」思想的破解還有待時日。
張建說,如果沒有「同等優先」和「利益導向機制」對女孩的利益進行保障,那麼重男輕女的思想還會繼續下去,這關乎女性的生命權、發展權,絕非小事。過去,中國人口問題主要是抓數量問題,現在要抓結構問題,這意味著中國開始統籌解決人口問題。
新華社報道,按照中國公元兩千年人口普查的數據,到二零二零年,中國將有三千萬男人找不到老婆。
報道指出,自上世紀八零年代以來,中國出生人口男女性別比持續升高。據兩千年第五次中國人口普查結果顯示,中國出生人口男女性別比已達到一百一十七比一百,嚴重超出一百零三比一百零七的正常範圍。而二零零五年百分之一人口抽樣調查結果顯示,中國出生人口性別比又有所升高,達一百一十八點五八比一百。
中國人口和計劃生育委員會宣傳教育司司長張建近日在廣西開展全國「關愛女孩」行動萬里行活動,他表示,國家人口和計生委有意願爭取把抑制男女性別比例失調的「利益導向機制」納入全國性的政策範疇,可為解決中國出生人口性別比偏高的問題提供一個有效的治理途徑。
自二零零三年起,中國政府選擇性別失衡問題最為嚴重的二十四個縣試點「關愛女孩」行動,目的在通過廣泛深入地宣傳教育,逐步建立起有利於女孩及其家庭發展的利益導向機制。
三年來,這些地方政府採取一系列「利益導向」政策,幫助下一代全是女孩的家庭發展生產,為這樣的家庭提供養老、醫療等社會保障,保障女孩的受教育權等。
比如,下一代全是女孩的夫婦,在其六十歲以後,每人每年可獲得人民幣六百元的獎勵扶助金;獨生女家庭或者雙女孩家庭,可以優先獲得小額貸款;有的地區獨生女家庭或者雙女孩家庭的女孩在中考高考時還可以獲得一定程度的加分,甚至在就業時,同等條件下,女性優於男性錄用。
有關專家認為,「利益導向機制」可有效破解中國人的「養兒防老」的思想問題,但「傳宗接代」思想的破解還有待時日。
張建說,如果沒有「同等優先」和「利益導向機制」對女孩的利益進行保障,那麼重男輕女的思想還會繼續下去,這關乎女性的生命權、發展權,絕非小事。過去,中國人口問題主要是抓數量問題,現在要抓結構問題,這意味著中國開始統籌解決人口問題。
Subscribe to:
Posts (Atom)
Blog Archive
-
▼
2008
(50)
-
▼
July
(19)
- Windows Server 2008 Partner Activation Guide
- windows server 2008 激活 安装 设置 (精简语言包/必备程序下载)
- how to activate windows server 2008 enterprise
- forum: windows activation
- 激活了的server 2008 该如何备份
- 架设基于Linux的服务器集群
- RedHat MPI SSH科学集群安装指南
- RedHat AS 3.0下高可用性集群配置
- 非常全面的NFS文档
- MPICH常用网站
- Redhat Linux修改机器名和Ip方法
- MS4.0在安腾IA64位服务器上的安装总结
- Materials-Studio 论坛问答全集
- 应该养成的十个习惯
- 如何阅读文献
- Materials Studio在cluster上的安装指南
- 组建linux集群(P4+SU)及编译并行VASP(libgoto+Lam-mpi)
- 寓言启示录_做人要懂得知足
- 老师的搞笑情书
-
▼
July
(19)